Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T22:53:54.276Z Has data issue: false hasContentIssue false

X-raying the evolution of SN 1987A

Published online by Cambridge University Press:  17 October 2017

Vinay L. Kashyap
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA email: vkashyap@cfa.harvard.edu
David van Dyk
Affiliation:
Dept. of Statistics, Imperial University, London, UK
Katy McKeough
Affiliation:
Dept. of Statistics, Harvard University, Cambridge MA, USA
Frank Primini
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA
Diab Jerius
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA
Akshay Gowrishankar
Affiliation:
Acton-Boxborough Regional High, Acton MA, USA
Aneta Siemiginowska
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA
Andreas Zezas
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138, USA Dept. of Physics, University of Crete, Heraklion, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

SN 1987A has been observed with the Chandra X-ray Observatory over the entire course of the mission. We have re-analyzed the archival data by constructing an empirical point spread function and reconstructing high-resolution images using a Bayesian multi-scale image reconstruction algorithm. We are able to resolve structure in the equatorial ring of SN 1987A with unprecedented detail, at scales of $\approx \frac{1}{4}$ arcsec. We describe how the point spread function is constructed, and the reconstruction method, and explore the evolution of the inner ring at different epochs and passbands.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Burrows, D., et al. 1995, ApJ, 452, 6808 Google Scholar
Burrows, D., et al. 2000 ApJ, 543, L149 Google Scholar
Connors, A. & van Dyk, D. A. 2007 SCMA IV, ASPC v371, p101Google Scholar
Connors, A., et al. 2011 ADASS XX, v442, p643 Google Scholar
Esch, D., et al. 2004 ApJ, 610, 1213 CrossRefGoogle Scholar
Frank, K., et al. 2016 ApJ, 829, 40 Google Scholar
Fransson, C., et al. 2015 ApJL, 806, L19 Google Scholar
Fruscione, A., et al. 2006 Proc. SPIE, 6270, 62701V Google Scholar
Graessle, D., et al. 2006 Proc. SPIE, 6270, 62701X CrossRefGoogle Scholar
Hasinger, G., et al. 1996 A&A, 312, 9 Google Scholar
Helder, , et al. 2013 ApJ, 764, 11 Google Scholar
Lee, H., et al. 2011 ApJ, 731, 126 Google Scholar
Li, , et al. 2014 ApJ, 610, 1204 Google Scholar
McKeough, K., et al. 2016 ApJ, 833, 123 Google Scholar
Orlando, S., et al. 2015 ApJ, 810, 168 CrossRefGoogle Scholar
Park, T., et al. 2006 ApJ, 646, 1001 Google Scholar
Racusin, D., et al. 2009 ApJ, 703, 1752 Google Scholar
Stein, N., et al. 2015 ApJ, 813, 66 Google Scholar
Xu, J., et al. 2014 ApJ, 794, 97 CrossRefGoogle Scholar