Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T15:24:27.539Z Has data issue: false hasContentIssue false

The X-ray binary populations of M81 and M82

Published online by Cambridge University Press:  30 December 2019

Paul H. Sell
Affiliation:
Department of Physics, University of Crete, Heraklion, Greece email: psell@physics.uoc.gr Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
Andreas Zezas
Affiliation:
Department of Physics, University of Crete, Heraklion, Greece email: psell@physics.uoc.gr Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
Stephen J. Williams
Affiliation:
Department of Physics, University of Crete, Heraklion, Greece email: psell@physics.uoc.gr Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
Jeff J. Andrews
Affiliation:
Department of Physics, University of Crete, Heraklion, Greece email: psell@physics.uoc.gr Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
Kosmas Gazeas
Affiliation:
Department of Astrophysics, University of Athens, Zografos, Athens, Greece
John S. Gallagher
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA
Andrew Ptak
Affiliation:
NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use deep Chandra and HST data to uniquely classify the X-ray binary (XRB) populations in M81 on the basis of their donor stars and local stellar populations (into early-type main sequence, yellow giant, supergiant, low-mass, and globular cluster). First, we find that more massive, redder, and denser globular clusters are more likely to be associated with XRBs. Second, we find that the high-mass XRBs (HMXBs) overall have a steeper X-ray luminosity function (XLF) than the canonical star-forming galaxy XLF, though there is some evidence of variations in the slopes of the sub-populations. On the other hand, the XLF of the prototypical starburst M82 is described by the canonical powerlaw (αcum ∼ 0.6) down to LX ∼ 1036 erg s−1. We attribute variations in XLF slopes to different mass transfer modes (Roche-lobe overflow versus wind-fed systems).

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P., et al. 2016, Phys. Rev. Lett., 116, 1102 Google Scholar
Antoniou, V., Zezas, A., Hatzidimitriou, D., McDowell, J. C. 2009, ApJ, 697, 1695 CrossRefGoogle Scholar
Antoniou, V. & Zezas, A. 2016, MNRAS, 459, 528 CrossRefGoogle Scholar
Arur, K. & Maccarone, T. J. 2018, MNRAS, 474, 69 CrossRefGoogle Scholar
Boroson, B., Kim, D.-W., Fabbiano, G. 2011, ApJ, 729, 12 CrossRefGoogle Scholar
Das, A., Mesinger, A., Pallottini, A., Ferrara, A., & Wise, J. H. 2017, MNRAS, 469, 1166 CrossRefGoogle Scholar
Di Stefano, R. & Kong, A. K. H. 2004, ApJ, 609, 710 CrossRefGoogle Scholar
Douna, V. M., Pellizza, L. J., Laurent, P., & Mirabel, I. F. 2018, MNRAS, 474, 3488 CrossRefGoogle Scholar
Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., & Maeder, A. 2012, A&A, 537, A146 Google Scholar
Fabbiano, G. 2006, ARAA, 44, 323 CrossRefGoogle Scholar
Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A., & Basu-Zych, A. 2013, ApJ, 776, L31 CrossRefGoogle Scholar
Garofali, K., Williams, B. F., Hillis, T., Gilbert, K. M., Dolphin, A. E., Eracleous, M., Binder, B. 2018, MNRAS, 479, 3526 CrossRefGoogle Scholar
Grimm, H.-J., Gilfanov, M., & Sunyaev, R. 2002, A&A, 391, 923 Google Scholar
Hong, J., van den Berg, M., Schlegel, E. M., Grindlay, J. E., Koenig, X., Laycock, S., & Zhao, P. 2005, ApJ, 635, 907 CrossRefGoogle Scholar
Justham, S. & Schawinski, K. 2012, MNRAS, 423, 1641 CrossRefGoogle Scholar
Kim, D.-W., & Fabbiano, G. 2010, ApJ, 721, 1523 CrossRefGoogle Scholar
Kong, A. K. H., DiStefano, R., Garcia, M. R., & Greiner, J. 2003, ApJ, 585, 298 CrossRefGoogle Scholar
Lazzarini, M., Hornschemeier, A. E., Williams, B. F., Wik, D., Vulic, N., Yukita, M., Zezas, A., Lewis, A. R., Durbin, M., Ptak, A., Bodaghee, A., Lehmer, B. D., Antoniou, V., & Maccarone, T. 2018, ApJ, 862, 28 CrossRefGoogle Scholar
Leonidaki, I., Zezas, A., & Boumis, P. 2010, ApJ, 725, 842 CrossRefGoogle Scholar
Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, MNRAS, 419, 25 CrossRefGoogle Scholar
Mineo, S., Gilfanov, M., Lehmer, B. D., Morrison, G. E., & Sunyaev, R. 2014, MNRAS, 437, 1698 CrossRefGoogle Scholar
Nantais, J. B., Huchra, J. P., Zezas, A., Gazeas, K., & Strader, J. 2011, AJ, 142, 183 CrossRefGoogle Scholar
Pannuti, T. G., Schlegel, E. M., Filipović, M. D., Payne, J. L., Petre, R., Harrus, I. M., Staggs, W. D., & Lacey, C. K. 2011, AJ, 142, 20 CrossRefGoogle Scholar
Sell, P. H., Pooley, D., Zezas, A., Heinz, S . Homan, J., & Lewin, W. H. G. 2011, ApJ, 735, 26 CrossRefGoogle Scholar
Sivakoff, G. R., Jordán, A., Sarazin, C. L., Blakeslee, J. P., Côté, P., Ferrarese, L., Juett, A. M., Mei, S., & Peng, E. W. 2007, ApJ, 660, 1246 CrossRefGoogle Scholar
Soria, R., Pakull, M. W., Broderick, J. W., Corbel, S., Motch, C. 2010, MNRAS, 409, 541 CrossRefGoogle Scholar
Tüllmann, R., Gaetz, T. J., Plucinsky, P. P., Kuntz, K. D., Williams, B. F., Pietsch, W., Haberl, F., Long, K. S., Blair, W. P., Sasaki, M., Winkler, P. F., Challis, P., Pannuti, T. G., Edgar, R. J., Helfand, D. J., Hughes, J. P., Kirshner, R. P., Mazeh, T., & Shporer, A. 2011, ApJS, 193, 31 CrossRefGoogle Scholar
Tauris, T. M. & van den Heuvel, E. P. J. 2010, Compact Stellar X-ray Sources, 623Google Scholar
Zezas, A., Fabbiano, G., Rots, A. H., & Murray, S. S. 2002, ApJ, 577, 710 CrossRefGoogle Scholar
Zhang, Z., Gilfanov, M., Voss, R., Sivakoff, G. R., Kraft, R. P., Brassington, N. J., Kundu, A., Jordán, A., Sarazin, C. 2011, A&A, 533, 33 Google Scholar