Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T23:38:00.072Z Has data issue: false hasContentIssue false

Unveiling the structure of the progenitors of type-IIP Supernovae through multi-waveband observations

Published online by Cambridge University Press:  17 October 2017

F. K. Sutaria
Affiliation:
Indian Institute of Astrophysics, Koramangala Block II, Bangalore 560034, India. email: fsutaria@gmail.com
Alak Ray
Affiliation:
Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, Maharashtra 400005, India. email: alak.ray@gmail.com
Subhash Bose
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871, China. email: email@subhashbose.com
Brijesh Kumar
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital - 263001, Uttarakhand, India. email: brij@aries.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observational evidence from archival, pre-explosion images, suggests that progenitors of type-IIP SNe (SNe-IIP) have 8 ⩽ MP ⩽ 17 M. However, the post-explosion temporal evolution of the event suggests that even in this mass range, the stellar evolutionary paths, the ensuing mass loss, and the eventual interaction of the supernova shock with the resulting CSM can show considerable diversity. Here we present the results from our program on multi-waveband (mainly optical) observations of SNe-IIP. Mass loss in their progenitors, with a massive and extended H-envelopes, is seen to occur via both strong stellar winds, or episodic mass ejections. Moreover, some type-IIP SNe also show unusually steep decline, characteristic of type-IIL (e.g. SN-IIP 2013ej). Our early and late-time spectrophotometry of these events shows CSM- shock interaction to varying degree among progenitors of comparable mass. Combined with X-ray data, our findings suggest that SNe-IIP progenitors can lose mass via strong stellar winds (e.g. SN2013ej, and SN2014cx), have episodic mass loss (SN2011ja), or have negligible mass loss (SN2012aw, SN2013ab).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bose, S., Valenti, S., Misra, K., Pumo, M. L., Zampieri, L., Sand, D., Kumar, B., Pastorello, A., Sutaria, F., Maccarone, T. J., Kumar, B., Graham, M. L., Howell, D. A., Ochner, P., Chandola, H. C., & Pandey, S. B., 2015, MNRAS, 450, 2373.Google Scholar
Bose, S., Sutaria, F., Kumar, B., Duggal, C., Misra, K., Brown, P. J., Singh, M., Dwarkadas, V., York, D. G., Chakraborti, S., Chandola, H. C., Dahlstrom, J., Ray, A., & Safonova, M., 2015, ApJ, 806, 160.Google Scholar
Bose, S., Kumar, B., Sutaria, F., Kumar, B., Roy, R., Bhatt, V. K., Pandey, S. B., Chandola, H. C., Sagar, R., Misra, K., & Chakraborti, S., 2013, MNRAS, 433, 1871.Google Scholar
Chakraborti, S., Ray, A., Smith, R., Margutti, R., Pooley, D., Bose, S., Sutaria, F., Chandra, P., Dwarkadas, V. V., Ryder, S., & Maeda, K., 2016, ApJ, 817, 22.CrossRefGoogle Scholar
Chakraborti, S., Ray, A., Smith, R., Ryder, S., Yadav, N., Sutaria, F., Dwarkadas, V. V., Chandra, P., Pooley, D., & Roy, R., 2013, ApJ, 774, 30.Google Scholar
Chevalier, R. A., Fransson, C., & Nymark, T. K., 2006, ApJ, 641, 1029.Google Scholar
Horiuchi, S., Nakamura, K., Takiwaki, T., & Kotake, K., Tanaka, M., 2014, MNRAS, 445, L99L103.Google Scholar
Huang, F., Wang, X., Zampieri, L., Pumo, M. L., Arcavi, I., Brown, P. J., Graham, M. L., Filippenko, A. V., Zheng, W., Hosseinzadeh, G., Howell, D. A., McCully, C., Ruil, L., Valenti, S., Zhang, T., Zhang, J., Zhang, K. & Wang, L., 2016, ApJ, 832, 139.Google Scholar
Immler, S. & Brown, P. J., 2012, ATel 3995.Google Scholar
Margutti, R., Soderberg, A. M. and Milisavljevic, D., 2013 ATel 4832.Google Scholar
Margutti, R., Chakraborti, S., Brown, P. J., & Sokolovsky, K., 2013, ATel 5264.Google Scholar
Nagy, A. P., Ordasi, A., Vink, J., & Wheeler, J. C., 2014, A & A, 571, A77.Google Scholar
Rabinak, I. & Waxman, E., 2011, ApJ, 728, 63.Google Scholar
Stockdale, C. J., Ryder, S. D., Van Dyk, S. D., Bauer, F. E., Marcaide, J. M., Immler, S., Pooley, D., Williams, C. L. M., Weiler, K. W., & Horesh, A., 2012, ATel 4012.Google Scholar
Sokolovsky, K., Giroletti, M., Stagni, M., Nanni, M. & Mahabal, A., 2013, ATel 5264.Google Scholar
Smartt, S. J., 2015, PASA, 32, 16.Google Scholar
Valenti, S., Sand, D., Stritzinger, M., Howell, D. A., Arcavi, I., McCully, C., Childress, M. J., Hsiao, E. Y., Contreras, C., Morrell, N., Phillips, M. M., Gromadzki, M., Kirshner, R. P., & Marion, G. H., 2015, MNRAS, 448, 2608.CrossRefGoogle Scholar
Yadav, N., Chakraborti, S., & Ray, A., 2012, ATel 4010.Google Scholar
Yadav, N., Ray, A., Chakraborti, S., Stockdale, C., Chandra, P., Smith, R., Roy, R., Bose, S., Dwarkadas, V., Sutaria, F., & Pooley, D., 2014, 782, 30.Google Scholar