Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T07:16:22.506Z Has data issue: false hasContentIssue false

Ubiquitous millimeter-wavelength Class I methanol masers associated with massive (proto)stellar outflows: ALMA and SMA results

Published online by Cambridge University Press:  16 July 2018

C. J. Cyganowski
Affiliation:
Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK email: cc243@st-andrews.ac.uk
D. Hannaway
Affiliation:
Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK email: cc243@st-andrews.ac.uk
C. L. Brogan
Affiliation:
NRAO, 520 Edgemont Rd, Charlottesville, VA 22903, USA
T. R. Hunter
Affiliation:
NRAO, 520 Edgemont Rd, Charlottesville, VA 22903, USA
Q. Zhang
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the discovery of widespread millimeter-wavelength Class I methanol maser emission associated with protostellar molecular outflows in the massive (proto)cluster G11.92−0.61. Our ~0.5″-resolution SMA and ALMA observations of the 229 GHz and 278 GHz Class I transitions reveal seven and twelve candidate masers, respectively: all 229 GHz masers have 278 GHz counterparts, and five are also coincident with 44 GHz Class I masers previously detected with the VLA. For paired masers, the peak intensities at 229 GHz and 278 GHz are correlated. We also find tentative evidence for a correlation between the strength of millimeter-wavelength Class I maser emission and the energy of the associated molecular outflow.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2017, MNRAS, 468, 3694CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2014, Ap. Lett., 796, L2Google Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2011, ApJ, 729, 124CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., & Churchwell, E., 2009, ApJ, 702, 1615CrossRefGoogle Scholar
Kalenskii, S. V., Kurtz, S., & Bergman, P., 2013, Astron. Rep., 57, 120CrossRefGoogle Scholar
Kurtz, S., Hofner, P., & Álvarez, C. V., 2004, ApJS, 155, 149CrossRefGoogle Scholar
Plambeck, R. L. & Menten, K. M., 1990, ApJ, 364, 555CrossRefGoogle Scholar
Sato, M., Wu, Y. W., Immer, K., et al. 2014, ApJ, 793, 72CrossRefGoogle Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., et al. 2014, MNRAS, 439, 2584CrossRefGoogle Scholar
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., et al. 2012, Cosmic Masers - from OH to H0, 287, 433Google Scholar