Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:54:51.463Z Has data issue: false hasContentIssue false

Towards astrobiological experimental approaches to study planetary UV surface environments

Published online by Cambridge University Press:  13 January 2020

Ximena C. Abrevaya
Affiliation:
Instituto de Astronoma y Fsica del Espacio (UBA-CONICET) Ciudad Autónoma de Buenos Aires, Argentina. email: abrevaya@iafe.uba.ar Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires, Argentina.
Martin Leitzinger
Affiliation:
Institute of Physics, IGAM, University of Graz, Austria.
Oscar J. Oppezzo
Affiliation:
Departamento de Radiobiologa, Comisión Nacional de Energa Atómica. Buenos Aires, Argentina.
Petra Odert
Affiliation:
Institute of Physics, IGAM, University of Graz, Austria.
G. Juan M. Luna
Affiliation:
Instituto de Astronoma y Fsica del Espacio (UBA-CONICET) Ciudad Autónoma de Buenos Aires, Argentina. email: abrevaya@iafe.uba.ar Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Autónoma de Buenos Aires, Argentina.
Manish Patel
Affiliation:
School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, U.K.
Ana F. Forte-Giacobone
Affiliation:
Departamento de Radiobiologa, Comisión Nacional de Energa Atómica. Buenos Aires, Argentina. Departamento de Ingeniera, Universidad Nacional de Tres de Febrero. Buenos Aires, Argentina.
Arnold Hanslmeier
Affiliation:
Institute of Physics, IGAM, University of Graz, Austria.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar ultraviolet radiation (UVR) has been studied in the last decade and has been found to be an important factor to determine the habitability of planetary surfaces. It is known that UVR can be a constraint for life. However, most of the studies of UVR and habitability have missed some fundamental aspects: i) Accurate estimation of the planetary atmospheric attenuation, ii) The biological inferences used to represent the impact of the stellar UVR on life are theoretical and based on the action spectrum (for DNA or microorganisms) or considering parameters as the “lethal dose” obtained from non-astrobiological experiments. Therefore, the conclusions reached by previous studies about the UVR habitability of planetary bodies may be inaccurate. In this work, we propose how to address these studies in a more accurate way through an interdisciplinary approach that combines astrophysics, microbiology, and photobiology and by the use of specially designed laboratory experiments.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Abrevaya, X. C. & Thomas, B. C. 2017, In: Gordon, R. and Sharov, A. (eds.) Habitability of the Universe before Earth. Elsevier, 531 ppGoogle Scholar
Abrevaya, X. C., Hanslmeier, A., Leitzinger, M., et al. 2014a, RevMexAA, 44, 144 Google Scholar
Abrevaya, X. C., Leitzinger, M., Odert, P., et al. 2014b, AbSciCon Abstracts, 7376 Google Scholar
Abrevaya, X. C. 2013, BAAA, 56, 113 Google Scholar
Ayres, T. R. 1997, J. Geophys. Res., 102, 1641 CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2007, Icarus, 192, 582 CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2006, Icarus, 183, 491 CrossRefGoogle Scholar
Chyba, C. F. & Sagan, C. 1992, Nature, 355, 125 CrossRefGoogle Scholar
Cnossen, I, Sanz-Forcada, J, Favata, F, et al. 2007, J. Geophys. Res., 112, E02008 CrossRefGoogle Scholar
Cockell, C. S. 1998, J. theor. Biol., 193, 717 CrossRefGoogle Scholar
Cockell, C. S. 1999, Icarus, 141, 399 CrossRefGoogle Scholar
Cockell, C. S. 2000, Icarus, 30, 467 Google Scholar
Cuntz, M., Guinan, E. F., Kurucz, R. L. 2010, Proceedings IAU Symposium, 264, 1 Google Scholar
DesMarais, D. J., Nuth, J. A., Allamandola, L. J., et al. 2008, Astrobiology 8, 715 CrossRefGoogle Scholar
Estrela, R. & Valio, A. 2018, arXiv:1708.05400Google Scholar
Garca-Sage, K., Glocer, A., Drake, J. J., et al. 2017, ApJL 844, L13 CrossRefGoogle Scholar
Gershberg, R. E. 2005, In: Solar-Type Activity in Main-Sequence Stars, Elsevier, 494 ppGoogle Scholar
Hanslmeier, A. 2018, In: Planetary Habitability and Stellar Activity. World Scientific Press, Singapore, New York, London, 264 ppCrossRefGoogle Scholar
Horneck, G., Walter, N., Westall, F., et al. 2016, Astrobiology, 16, 201 CrossRefGoogle ScholarPubMed
Howard, W. S., Tilley, M. A., Corbett, H., et al. 2018, ApJL 860, L30 CrossRefGoogle Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., et al. 2007, Astrobiology 7, 167 CrossRefGoogle Scholar
Kielbassa, C., Roza, L., & Epe, B. 1997, Carcinogenesis, 18, 811 CrossRefGoogle Scholar
O’Malley-James, J. T. & Kaltenegger, L. 2017, MNRAS Lett., 469, L26 CrossRefGoogle Scholar
Patel, M. R., Zarnecki, J. C., & Catling, D. C. 2002, Planet. Space Sci., 50, 915 CrossRefGoogle Scholar
Pestunova, O., Simonov, A., Snytnikov, V. et al. 2005, Adv. Space Res. 36, 214 CrossRefGoogle Scholar
Ranjan, S., Wordsworth, R., & Sasselov, D. D. 2017, ApJ 843, 110 CrossRefGoogle Scholar
Ribas, I., Porto de Mello, G. F., Ferreira, L. D., et al. 2010, ApJ, 714, 384 CrossRefGoogle Scholar
Rugheimer, S. A., Segura, , & Kaltenegger, L. 2015, ApJ 806, 137 CrossRefGoogle Scholar
Sagan, C. & Khare, B. 1971, Science, 173, 417 CrossRefGoogle Scholar
Scalo, J., Kaltenegger, L., Segura, A. et al. 2007, Astrobiology 7, 85 CrossRefGoogle Scholar
Wynn-Williams, D. D., Edwards, H. G. M., Newton, E. M., et al. 2002, Int. J. Astrobiol. 1, 39 CrossRefGoogle Scholar