Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T12:00:10.368Z Has data issue: false hasContentIssue false

THz Observations of the Cool Neutral Medium

Published online by Cambridge University Press:  30 January 2013

John M. Dickey*
Affiliation:
University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001Australia email: john.dickey@utas.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The astrophysical drivers for far-infrared spectroscopy of the Galactic interstellar medium using a 15m class telescope on Dome A are compelling. For the diffuse, atomic phase, the most important lines in the far-IR spectrum are OI at 63μm and CII at 158μm. These are the dominant cooling lines of the cool, neutral medium, and they show rich spectral structure in Herschel observations at low latitudes. But theory predicts that they should both be highly sub-thermal in excitation, so that the level populations are not in equilibrium with the kinetic temperature of the gas. A large single dish telescope or an interferometer may be able to study the absorption and emission to determine the optical depth and column density of atoms and the physical conditions in the emission regions. Comparison of Herschel CII spectra with 21-cm absorption spectra indicates that a significant fraction of the 158μm flux may be coming from the atomic rather than the molecular phase.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Dickey, J. M., McClure-Griffiths, N., Gaensler, B., & Green, A. 2003, ApJ., 585, 801.Google Scholar
Dickey, J. M., McClure-Griffiths, N., Gibson, S. J., Gomez, J. F., Imai, H., et al. 2012, Pub. Astr. Soc. Aust. in press, arXiv 1207.0891Google Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium, (Princeton: Princeton University Press).Google Scholar
Gibson, S. J., Taylor, A. R., Higgs, L. A., Brunt, C. M., & Dewdney, P. E. 2005, ApJ., 626, 195.Google Scholar
Hollenbach, D. J. & Tielens, A. G. G. M. 1997, Ann. Rev. Astron. Astrophys., 35, 179.Google Scholar
Langer, W. D., Velusamy, T., Pineda, J. L., Goldsmith, P. F., Li, D., & Yorke, H. W. 2010, Astron. Astrophys., 521, L17.Google Scholar
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., Green, A. J., Haverkorn, M., & Strasser, S. 2005, ApJ. Supp., 158, 178.Google Scholar
Stacey, G. J., Hailey-Dunsheath, S., Ferkinhoff, C., Nikola, T., Parshley, S. C., Benford, D. J., Staguhn, J. G., & Fiolet, N. 2010, ApJ., 724, 957.Google Scholar
Strasser, S. T. 2006, Ph. D. Thesis, University of Minnesota.Google Scholar
Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995, ApJ. 443, 152.Google Scholar