Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:03:05.955Z Has data issue: false hasContentIssue false

A study of AGB stars in LMC clusters

Published online by Cambridge University Press:  01 July 2008

Thomas Lebzelter
Affiliation:
Department of Astronomy, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: lebzelter@astro.univie.ac.at
Michael T. Lederer
Affiliation:
Department of Astronomy, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: lebzelter@astro.univie.ac.at
Sergio Cristallo
Affiliation:
INAF, Teramo, Italy email: straniero@oa-teramo.inaf.it
Oscar Straniero
Affiliation:
INAF, Teramo, Italy email: straniero@oa-teramo.inaf.it
Kenneth H. Hinkle
Affiliation:
NOAO, Tucson, USA email: hinkle@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

LMC clusters offer an outstanding opportunity to investigate the late stages of stellar evolution of stars in the mass range between 1.5 and 2 M. In this presentation we will focus on our results on mixing events during the evolution along the Asymptotic Giant Branch (AGB). Surface abundances have been determined for a number of cluster AGB stars from high resolution near infrared spectra. We show for the first time the evolution of C/O and 12C/13C ratios along a cluster AGB. The change of both quantities due to dredge up events is compared with model predictions. Our results indicate the late occurrence of a moderate extra-mixing in some cases.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alcaino, C., Liller, W., Alvarado, F., et al. 1999, A&AS, 135, 103Google Scholar
Busso, M., Gallino, R., & Wasserburg, J. 1999, ARAA, 37, 239CrossRefGoogle Scholar
Charbonnel, C. 1995, ApJ, 453, 41CrossRefGoogle Scholar
Chieffi, A., Limongi, M., & Straniero, O. 1998, ApJ, 502, 737CrossRefGoogle Scholar
Frogel, J. A., Mould, J., & Blanco, V. M., 1990, ApJ, 352, 96CrossRefGoogle Scholar
Grocholski, A. J., Cole, A. A.Sarajedini, A., et al. 2006, AJ, 132, 1630CrossRefGoogle Scholar
Herwig, F. 2000, A&A, 360, 952Google Scholar
Herwig, F., Blöcker, T., & Driebe, T. 2000, MemSAI, 71, 745Google Scholar
Karakas, A. & Lattanzio, J. 2007, PASA, 24, 103CrossRefGoogle Scholar
Lebzelter, T. & Wood, P. R. 2007, A&A, 475, 643Google Scholar
Lebzelter, T., Lederer, M. T., Cristallo, S., et al. 2008, A&A, 486, 511Google Scholar
Lloyd Evans, T. 1983, MNRAS, 204, 985CrossRefGoogle Scholar
Mackey, A. D. & Broby Nielsen, P. 2007, MNRAS, 379, 151CrossRefGoogle Scholar
Mucciarelli, A., Ferraro, F. R., Origlia, L., & Fusi Pecci, F. 2007, AJ, 133, 2053CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1990, ApJS, 72, 387CrossRefGoogle Scholar
Straniero, O., Gallino, R., & Cristallo, S. 2006, N.Phys.A, 777, 311CrossRefGoogle Scholar