Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T09:35:37.432Z Has data issue: false hasContentIssue false

The State of the Solar Wind, Magnetosphere, and Ionosphere During the Maunder Minimum

Published online by Cambridge University Press:  27 November 2018

Pete Riley
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121, USA email: pete@predsci.com
Roberto Lionello
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121, USA email: pete@predsci.com
Jon A. Linker
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121, USA email: pete@predsci.com
Mathew J. Owens
Affiliation:
Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Both direct observations and reconstructions from various datasets, suggest that conditions were radically different during the Maunder Minimum (MM) than during the space era. Using an MHD model, we develop a set of feasible solutions to infer the properties of the solar wind during this interval. Additionally, we use these results to drive a global magnetospheric model. Finally, using the 2008/2009 solar minimum as an upper limit for MM conditions, we use results from the International Reference Ionosphere (ILI) model to speculate on the state of the ionosphere. The results describe interplanetary, magnetospheric, and ionospheric conditions that were substantially different than today. For example: (1) the solar wind density and magnetic field strength were an order of magnitude lower; (2) the Earth’s magnetopause and shock standoff distances were a factor of two larger; and (3) the maximum electron density in the ionosphere was substantially lower.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Riley, P., Lionello, R., Linker, J. A., Cliver, E., Balogh, A., Charbonneau, P., Crooker, N., DeRosa, M., Lockwood, M., Owens, M., et al., The Astrophysical Journal 802, 105 (2015).Google Scholar
Eddy, J. A. Science 192, 11891202 (1976).Google Scholar
Berggren, A.-M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S. J., Abreu, J., & Vinther, B. M. Geophys. Res. Lett. 36, 11801 (2009).Google Scholar
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, G., Manning, S., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., & Weyhenmeyer, C. E. Radiocarbon 46, 10291058 (2004).Google Scholar
De Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. Journal of Geophysical Research: Space Physics 109 (2004).Google Scholar
Bilitza, D. & Reinisch, B. W. Advances in space research 42, 599609 (2008).Google Scholar
Riley, P., Mikic, Z., Lionello, R., Linker, J. A., Schwadron, N. A., & McComas, D. J. J. Geophys. Res. 115, 6104–+ (2010).Google Scholar
Pevtsov, A. A., Fisher, G. H., Acton, L. W., Longcope, D. W., Johns-Krull, C. M., Kankelborg, C. C., & Metcalf, T. R. Astrophys. J. 598, 13871391 (2003).Google Scholar
Smithtro, C. & Sojka, J. J., Journal of Geophysical Research: Space Physics 110 (2005).Google Scholar
Vogt, J., Zieger, B., Glassmeier, K.-H., Stadelmann, A., Kallenrode, M.-B., Sinnhuber, M., & Winkler, H., Journal of Geophysical Research: Space Physics 112 (2007).Google Scholar