Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 0.251 Render date: 2021-10-21T11:43:35.106Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spectral Evolutions Study of Gamma-Ray Burst Exponential Decays with Suzaku-WAM

Published online by Cambridge University Press:  05 September 2012

Makoto S. Tashiro
Affiliation:
Department of Physics, Saitama University, Sakura, Saitama, Japan, email: tashiro@phy.saitama-u.ac.jp
Kaori Onda
Affiliation:
Department of Physics, Saitama University, Sakura, Saitama, Japan, email: tashiro@phy.saitama-u.ac.jp
Kazutaka Yamaoka
Affiliation:
Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
Masahiro Ohno
Affiliation:
JAXA/Institute of Space and Astronautical Science, Sagamihara, Japan
Satoshi Sugita
Affiliation:
EcoTopia Science Institute, Nagoya University, Chikusa-ku, Nagoya, Japan
Takeshi Uehara
Affiliation:
Department of Physics, Hiroshima University, Kagami-Yama, Higashi-Hiroshima, Japan
Hiromi Seta
Affiliation:
Research Center for Measurement in Advanced Science, Rikkyo University, Tokyo, Japan
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An observational study is presented of the spectral evolution of gamma-ray burst (GRB) prompt emissions with the Suzaku Wide-band All-sky Monitor (WAM). We selected 6 bright GRBs exhibiting 7 well-separated fast-rise-exponential-decay (FRED) shaped light curves to investigate spectral changes by evaluating exponential decay time constants of the energy-resolved light curves. In addition, we carried out time-resolved spectroscopy of two of them which were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. The two imply different emission mechanisms; the one is well reproduced with a cooling blackbody radiation model with a power-law component, while the other prefers non-thermal emission model with a decaying turn over energy.

Type
Poster Papers
Copyright
Copyright © International Astronomical Union 2012

References

Band, D. et al. 1993, ApJ 413, 281CrossRefGoogle Scholar
Meszaros, P. & Rees, M. J. 2000, ApJ, 530, 292CrossRefGoogle Scholar
Tashiro, M. et al. 2012, PASJ, 64, 26CrossRefGoogle Scholar
Yamaoka, K. et al. 2009, PASJ, 61, S35CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spectral Evolutions Study of Gamma-Ray Burst Exponential Decays with Suzaku-WAM
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spectral Evolutions Study of Gamma-Ray Burst Exponential Decays with Suzaku-WAM
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spectral Evolutions Study of Gamma-Ray Burst Exponential Decays with Suzaku-WAM
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *