Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T08:40:41.030Z Has data issue: false hasContentIssue false

A search for optical and near-infrared counterparts of the compact binary merger GW190814

Published online by Cambridge University Press:  27 February 2023

Aishwarya Linesh Thakur*
Affiliation:
INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere, 100, I-00133 Rome RM, Italy

Abstract

We report on our observing campaign of the compact binary merger GW190814, detected by the Advanced LIGO and Advanced Virgo detectors on August 14th, 2019. This signal has the best localisation of any observed gravitational wave (GW) source, with a 90% probability area of 18.5 deg2, and an estimated distance of ≈240 Mpc. We obtained wide-field observations with the Deca-Degree Optical Transient Imager (DDOTI) covering 88% of the probability area down to a limiting magnitude of w = 19.9 AB. Nearby galaxies within the high probability region were targeted with the Lowell Discovery Telescope (LDT), whereas promising candidate counterparts were characterized through multi-colour photometry with the Reionization and Transients InfraRed (RATIR) and spectroscopy with the Gran Telescopio de Canarias (GTC). We use our optical and near-infrared limits in conjunction with the upper limits obtained by the community to constrain the possible electromagnetic counterparts associated with the merger. A gamma-ray burst seen along its jet’s axis is disfavoured by the multi-wavelength dataset, whereas the presence of a burst seen at larger viewing angles is not well constrained. Although our observations are not sensitive to a kilonova similar to AT2017gfo, we can rule out high-mass (> 0.1 M) fast-moving (mean velocity ≥ 0.3c) wind ejecta for a possible kilonova associated with this merger.

Type
Poster Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R., et al. 2020, ApJL, 896, L44 CrossRefGoogle Scholar
Ryan, G., et al. 2020, ApJ, 896, 166 CrossRefGoogle Scholar
Thakur, A.L., et al. 2020, MNRAS, 499, 3 Google Scholar
Wollaeger, R.T., et al. 2021, ApJ, 918, 10 CrossRefGoogle Scholar