Hostname: page-component-797576ffbb-gvrqt Total loading time: 0 Render date: 2023-12-02T13:42:59.226Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The role of intrinsic magnetic fields in planetary evolution and habitability: the planetary protection aspect

Published online by Cambridge University Press:  01 November 2008

Maxim L. Khodachenko
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email:
H. Lammer
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email:
H. I. M. Lichtenegger
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email:
J.-M. Grießmeier
ASTRON, Dwingeloo, The Netherlands email:
M. Holmström
Swedish Institute of Space Physics, Kiruna, Sweden email:
A. Ekenbäck
Swedish Institute of Space Physics, Kiruna, Sweden email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The widely used definition of a habitable zone (HZ) for planets as a circumstellar area, where the star's luminosity is sufficiently intense to maintain liquid water at the surface of a planet, is shown to be too simplified. The role of a host star's activity and the intrinsic magnetic field of a planet with respect to their influence on mass loss processes of close-in gas giants and a definition of a HZ for the terrestrial-type exoplanets are discussed. The stellar X-ray/EUV radiation and the stellar wind result in ionization, heating, chemical modification, and slow erosion of the planetary upper atmospheres throughout their lifetime. The closer the planet is to the star, the more efficient are these processes, and therefore, the more important becomes the magnetic protection of a planet as a potential habitat. Different ways for planetary magnetic dipole moment estimation, based on existing magnetic dynamo scaling laws as well as on the recent measurements of hot atomic hydrogen clouds around close-in ‘Hot Jupiters’ are considered, and the predictions of these estimations are compared to each other.

Contributed Papers
Copyright © International Astronomical Union 2009


Audard, M., Güdel, M., Drake, J. J., & Kashyap, V. L. 2000, ApJ 541, 396Google Scholar
Busse, F. H. 1976, Phys. Earth Planet. Int. 12 (4), 350Google Scholar
Cully, S. L., Fisher, G. H., Abbott, M. J., & Siegmund, O. H. W. 1994, ApJ 435, 449Google Scholar
Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J.-M., Lammer, H., Selsis, F., & Penz, T. 2008, ApJ, submittedGoogle Scholar
Grießmeier, J.-M., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Motschmann, U., Biernat, H. K., & Weiss, W. W. 2004, A&A 425, 753Google Scholar
Grießmeier, J.-M., Stadelmann, A., Motschmann, U., Belisheva, N. K., Lammer, H., & Biernat, H. 2005, Astrobiology 5, 587Google Scholar
Grießmeier, J.-M., Preusse, S., Khodachenko, M. L., Motschmann, U., Mann, G., & Rucker, H. O. 2007, Planet. & Space Sci. 55, 618Google Scholar
Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., & Wurz, P. 2008, Nature 451, 970Google Scholar
Houdebine, E. R., Foing, B. H., & Rodonó, M. 1990, A&A 238, 249Google Scholar
Huang, S. S. 1960, PASP 72, 489Google Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus 101, 108Google Scholar
Kasting, J. F. 1997, Orig. Life Evol. Biosph. 27 (1/3), 291Google Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H., Farrugia, C. J., & Rucker, H. 2007a, Astrobiology 7, 167Google Scholar
Khodachenko, M. L., Lammer, H., Lichtenegger, H. I. M., Langmayr, D., Erkaev, N. V., Grießmeier, J.-M., Leitner, M., Penz, T., Biernat, H. K., Motschmann, U., & Rucker, H. O. 2007b, Planet. & Space Sci. 55, 631Google Scholar
Kulikov, Yu. N., Lammer, H., Lichtenegger, H. I. M., Penz, T., Breuer, D., Spohn, T., Lundin, R., & Biernat, H. K. 2007, Space Sci Rev. 129, 207Google Scholar
Lammer, H., Lichtenegger, H., Kulikov, Yu., Grießmeier, J.-M., Terada, N., Erkaev, N., Biernat, H., Khodachenko, M. L., Ribas, I., Penz, T., & Selsis, F. 2007, Astrobiology 7, 185Google Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Yu. N., & Tian, F. 2008, Space Sci Rev. 139, 399Google Scholar
Lichtenegger, H. I. M., Lammer, H., & Stumptner, W. 2002, JGR 107 (A10), doi:10.1029/2001JA000322Google Scholar
Lichtenegger, H. I. M., Gröller, H., Lammer, H., Kulikov, Yu. N., & Shematovich, V. 2008, Geophys. Res. Lett. submittedGoogle Scholar
Mizutani, H., Yamamoto, T., & Fujimura, A. 1992, Adv. Space Res. 12 (8), 265Google Scholar
Penz, T., Erkaev, N. V., Kulikov, Yu. N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H. K., Selsis, F., Barge, P., Deleuil, M., & Leger, A. 2008, Planet. & Space Sci. 56, 1260Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ 622, 680Google Scholar
Rivera, E. J., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T. M., Laughlin, G., & Henry, G. W. 2005, ApJ 634, 625Google Scholar
Sano, Y. 1993, J. Geomag. Geoelectr. 45, 65Google Scholar
Santos, N. C., Bouchy, F., Mayor, M., Pepe, F., Queloz, D., Udry, S., Lovis, C., Bazot, M., Benz, W., Bertaux, J.-L., Curto, G. L., Delfosse, X., Mordasini, C., Naef, D., Sivan, J.-P., & Vauclair, S. 2004, A&A 426, L19Google Scholar
Scalo., J., Kaltenegger., L., Segura, A. G., Fridlund, M., Ribas, I., Kulikov, Yu. N., Grenfell, J. L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M. L., Eiroa, C., Kasting, J., & Lammer, H. 2007, Astrobiology 7, 85Google Scholar
Stevenson, D. J. 1983, Rep. Prog. Phys. 46, 555Google Scholar
Tian, F., Kasting, J. F., Liu, H., & Roble, R. G. 2008, JGR 113, Issue E5, CiteID E05008 (DOI: 10.1029/2007JE002946)Google Scholar
van den Oord, G. H. J. & Doyle, J. G. 1997, A & A 319, 578Google Scholar
Vidal-Madjar, A., des Etangs, A. L., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003, Nature 422, 143Google Scholar
Voigt, G.-H. 1995, in: Volland, H. (ed.), Handbook of atmospheric electrodynamics, vol. II (CRC Press), p. 333Google Scholar
Walker, A. R. 1981, MNRAS 195, 1029Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ 628, L143Google Scholar
Yelle, R. V. 2004, Icarus 170, 167Google Scholar