Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T12:31:20.226Z Has data issue: false hasContentIssue false

The role of AGN activity in the building up of the BCG at z ∼ 1.6

Published online by Cambridge University Press:  29 January 2021

Angela Bongiorno
Affiliation:
INAF-Observatory of Rome, via di Frascati 33, 00074, Monteporzio Catone, Rome, Italy email: angela.bongiorno@inaf.it, andrea.travascio@inaf.it
Andrea Travascio
Affiliation:
INAF-Observatory of Rome, via di Frascati 33, 00074, Monteporzio Catone, Rome, Italy email: angela.bongiorno@inaf.it, andrea.travascio@inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

XDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.

In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bertin, E. & Arnouts, S. 1996, A&As, 117, 393Google Scholar
Binney, J. & Tremaine, S. 1987, Galactic dynamics Google Scholar
Brodwin, M., Stanford, S. A., Gonzalez, A. H., et al. 2013, ApJ, 779, 13810.1088/0004-637X/779/2/138CrossRefGoogle Scholar
Brown, M. J. I., Moustakas, J., Kennicutt, R. C., et al. 2017, ApJ, 847, 13610.3847/1538-4357/aa8ad2CrossRefGoogle Scholar
Cavaliere, A., Colafrancesco, S., & Menci, N. 1992, ApJ, 392, 4110.1086/171402CrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 76310.1086/376392CrossRefGoogle Scholar
De Lucia, G. & Blaizot, J. 2007, MNRAS, 375, 210.1111/j.1365-2966.2006.11287.xCrossRefGoogle Scholar
Duras, F., Bongiorno, A., Ricci, F.,et al. 2020, A&A, 636, 73Google Scholar
Fassbender, R., Böhringer, H., Nastasi, A., et al. 2011, New Journal of Physics, 13, 12501410.1088/1367-2630/13/12/125014CrossRefGoogle Scholar
Fassbender, R., Nastasi, A., Santos, J. S., et al. 2014, A&A, 568, A5Google Scholar
Greene, J. E. & Ho, L. C. 2005, ApJ, 630, 122Google Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Madau, P., Pozzetti, L., & Dickinson, M. 1998, ApJ, 498, 10610.1086/305523CrossRefGoogle Scholar
Magliocchetti, M., Lutz, D., Rosario, D., et al. 2014, MNRAS, 442, 68210.1093/mnras/stu863CrossRefGoogle Scholar
Magliocchetti, M., Popesso, P., Brusa, M., & Salvato, M. 2018, MNRAS, 473, 2493Google Scholar
Reines, A. E. & Volonteri, M. 2015, ApJ, 813, 8210.1088/0004-637X/813/2/82CrossRefGoogle Scholar
Runnoe, J. C., Brotherton, M. S., & Shang, Z. 2012, MNRAS, 422, 47810.1111/j.1365-2966.2012.20620.xCrossRefGoogle Scholar
Santos, J. S., Altieri, B., Valtchanov, I., et al. 2015, MNRAS, 447, L6510.1093/mnrasl/slu180CrossRefGoogle Scholar
Santos, J. S., Fassbender, R., Nastasi, A., et al. 2011, A&A, 531, L15Google Scholar
Shankar, F., Allevato, V., Bernardi, M., et al. 2019, Nature Astronomy, 4, 28210.1038/s41550-019-0949-yCrossRefGoogle Scholar
Shankar, F., Bernardi, M., Sheth, R. K., et al. 2016, MNRAS, 460, 311910.1093/mnras/stw678CrossRefGoogle Scholar
Suh, H., Civano, F., Trakhtenbrot, B., et al. 2020, ApJ, 889, 3210.3847/1538-4357/ab5f5fCrossRefGoogle Scholar
Tozzi, P., Santos, J. S., Jee, M. J., et al. 2015, ApJ, 799, 9310.1088/0004-637X/799/1/93CrossRefGoogle Scholar
Tozzi, P., Santos, J. S., Nonino, M., et al. 2013, A&A, 551, A45Google Scholar
Travascio, A., Bongiorno, A., Tozzi, P., et al. 2020, arXiv e-prints, arXiv:2008.11132Google Scholar
Zhao, D., Aragón-Salamanca, A., & Conselice, C. J. 2015, MNRAS, 453, 444410.1093/mnras/stv1940CrossRefGoogle Scholar