Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-zzcdp Total loading time: 0.18 Render date: 2021-12-02T02:06:42.909Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Resolving the origin of hydrogen-line emission in YSOs with near-infrared interferometry

Published online by Cambridge University Press:  13 January 2020

Alexander Kreplin
Affiliation:
Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK email: a.kreplin@exeter.ac.uk,
Edward Hone
Affiliation:
Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK email: a.kreplin@exeter.ac.uk,
Larisa Tambovtseva
Affiliation:
Pulkovo Observatory of RAS, Pulkovskoe Shosse 65, St Petersburg 196140, Russia
Karl-Heinz Hofmann
Affiliation:
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
Stefan Kraus
Affiliation:
Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK email: a.kreplin@exeter.ac.uk,
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of the Brγ-line emission in Herbig Ae/Be stars is still an open question and might be related e.g., to a disc wind or the stellar magnetosphere. The study of the continuum and Brγ-emitting region of Herbig Ae/Be stars with high-spectral and high-spatial resolution gives great insights into the sub-au scale hydrogen gas distribution.

We observed the Herbig Be star MWC 120 with the VLTI/AMBER instrument in different spectral channels across the Brγ line with a spectral resolution of R~1500. Using radiative transfer modeling we found a radius of the line emitting region of ~0.4 au that is only two times smaller than the K-band continuum region. This is consistent with a disc wind scenario rather than an origin of magnetospheric emission.

We present near-infrared AMBER (R~12000) observations of the Herbig B[e] star MWC297 in the Brγ-line. We found that the near-infrared continuum emission is ~3.6 times more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Kreplin, A., Tambovtseva, L., Grinin, V., Kraus, S., Weigelt, G., & Wang, Y. 2018, MNRAS, 476, 4520 CrossRefGoogle Scholar
Hone, E., Kraus, S., Kreplin, A., Hofmann, K.-H., Weigelt, G., Harries, T., & Kluska, J. 2018, A&A, 607, 17 Google Scholar
Hofmann, K.-H., Weigelt, G., & Schertl, D. 2014, A&A, 565, 48 Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Resolving the origin of hydrogen-line emission in YSOs with near-infrared interferometry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Resolving the origin of hydrogen-line emission in YSOs with near-infrared interferometry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Resolving the origin of hydrogen-line emission in YSOs with near-infrared interferometry
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *