Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T00:52:30.874Z Has data issue: false hasContentIssue false

The Relationship between Long-Duration Gamma-Ray Flares and Solar Cosmic Rays

Published online by Cambridge University Press:  24 July 2018

Hugh S. Hudson*
Affiliation:
Space Sciences Laboratory, University of California, Berkeley CAUSA94720 email: hhudson@ssl.berkeley.edu SUPA School of Physics and Astronomy, University of Glasgow, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-30 by Frost & Dennis (1971), turns out to have a close association with the prolonged high-energy gamma-ray emission originally observed by Forrest et al. (1985). This identification has become clear via the observations of long-duration γ-ray flares by the Fermi/LAT experiment, for example in the event SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of EUV imagery available from SDO/AIA. The quandary is that these events have a clear association with SEPs in the high corona, and yet the gamma-ray production implicates the photosphere itself, despite the strong mirror force that should focus the particles away from the Sun We discuss the morphology of these phenomena and propose a solution to this problem.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ackermann, M., Allafort, A., Baldini, L., et al. 2017, The Astrophysical Journal, 835, 219Google Scholar
Chupp, E. L., Forrest, D. J., Vestrand, W. T., Dubrunner, H., Flueckiger, E. O., Cooper, J. F., Kanbach, G., Reppin, C. & Share, G. H. 1985, International Cosmic Ray Conference, 4Google Scholar
de Nolfo, G. A., Boezio, M., Bruno, A., Christian, E. R., Martucci, M., Mergè, M., Mocchiutti, E., Munini, R., Ricci, M., Ryan, J. M., Share, G. H. & Stochaj, S. 2016, AGU Fall Meeting AbstractsGoogle Scholar
Elliot, H. 1969, in Solar Flares and Space Research, ed. de Jager, C. & Svestka, Z., 356Google Scholar
Enomé, S. & Tanaka, H. 1971, in IAU Symposium, Vol. 43, Solar Magnetic Fields, ed. Howard, R., 413–416Google Scholar
Eradat Oskoui, S. & Neukirch, T. 2014, Astron. Astrophys., 567, A131Google Scholar
Forrest, D. J., Vestrand, W. T., Chupp, E. L., Rieger, E., Cooper, J. F. & Share, G. H. 1985, International Cosmic Ray Conference, 4Google Scholar
Frost, K. J. & Dennis, B. R. 1971, Astrophys. J., 165, 655CrossRefGoogle Scholar
Hudson, H. S. 1978, Astrophys. J., 224, 235Google Scholar
Jin, M., Petrosian, V., Liu, W. & Omodei, N. 2017, in AAS/Solar Physics Division Meeting, Vol. 48, AAS/Solar Physics Division Meeting, 3.03Google Scholar
Klein, K.-L., Tziotziou, K., Zucca, P., Valtonen, E., Vilmer, N., Malandraki, O. E., Hamadache, C., Heber, B. & Klener, J. 2017, Springer Astrophysics and Space Science LibraryGoogle Scholar
Krucker, S., Hudson, H. S., Glesener, L., White, S. M., Masuda, S., Wuelser, J.-P. & Lin, R. P. 2010, Astrophys. J., 714, 11081119CrossRefGoogle Scholar
Krucker, S. & Lin, R. P. 2008, Astrophys. J., 673, 1181Google Scholar
Kundu, M. R. 1965, Solar radio astronomy, New York: Interscience PublicationGoogle Scholar
Mandzhavidze, N. & Ramaty, R. 1992, Astrophys. J. Lett., 396, L111L114Google Scholar
Mewaldt, R. A., Cohen, C. M. S., Mason, G. M., Haggerty, D. K., Looper, M. D., Vourlidas, A., Desai, M. I., Giacalone, J., Labrador, A. W., Leske, R. A. & Mazur, J. E. 2005, in ESA Special Publication, Vol. 592, Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ed. Fleck, B., Zurbuchen, T. H. & Lacoste, H., 67Google Scholar
Olive, K. A., et al. 2014, Chinese Physics C, 38, 090001Google Scholar
Pesce-Rollins, M., Omodei, N., Petrosian, V., Liu, W., Rubio da Costa, F., Allafort, A. & Chen, Q. 2015a, Astrophys. J. Lett., 805, L15Google Scholar
Pesce-Rollins, M., Omodei, N., Petrosian, V., Liu, W., Rubio da Costa, F., Allafort, A. & Fermi-LAT Collaboration. 2015b, in International Cosmic Ray Conference, Vol. 34, 34th International Cosmic Ray Conference (ICRC2015), 128Google Scholar
Plotnikov, I., Rouillard, A. P. & Share, G. H. 2017, Astron. Astrophys., 608, A43Google Scholar
Schrijver, C. J. and De Rosa, M. L. 2003, Sol. Phys., 212, 165200Google Scholar
Share, G. H., Murphy, R. J., Tolbert, A. K., Dennis, B. R., White, S. M., Schwartz, R. A. & Tylka, A. J. 2017, arXiv:1711.01511Google Scholar
Sheeley, N. R. Jr & Wang, Y.-M. 2014, Astrophys. J., 797, 10CrossRefGoogle Scholar
Sheeley, N. R. Jr, Warren, H. P. & Wang, Y.-M. 2004, Astrophys. J., 616, 1224Google Scholar
Smerd, S. F. 1970, Proceedings of the Astronomical Society of Australia, 1, 305Google Scholar
Somov, B. V. & Kosugi, T. 1997, Astrophys. J., 485, 859Google Scholar