Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T05:48:34.903Z Has data issue: false hasContentIssue false

Recent Results from SPLASH: Chemical Abundances and Kinematics of Andromeda's Stellar Halo

Published online by Cambridge University Press:  09 May 2016

Karoline M. Gilbert
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA email: kgilbert@stsci.edu
Rachael Beaton
Affiliation:
The Observatories of the Carnegie Institution of Washington 813 Santa Barbara St., Pasadena, CA 91101, USA email: rbeaton@obs.carnegiescience.edu
Claire Dorman
Affiliation:
UCO/Lick Observatory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA email: cdorman@ucolick.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large scale surveys of Andromeda's resolved stellar populations have revolutionized our view of this galaxy over the past decade. The combination of large-scale, contiguous photometric surveys and pointed spectroscopic surveys has been particularly powerful for discovering substructure and disentangling the structural components of Andromeda. The SPLASH (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo) survey consists of broad- and narrow-band imaging and spectroscopy of red giant branch stars in lines of sight ranging in distance from 2 kpc to more than 200 kpc from Andromeda's center. The SPLASH data reveal a power-law surface brightness profile extending to at least two-thirds of Andromeda's virial radius (Gilbert et al. 2012), a metallicity gradient extending to at least 100 kpc from Andromeda's center (Gilbert et al. 2014), and evidence of a significant population of heated disk stars in Andromeda's inner halo (Dorman et al. 2013). We are also using the velocity distribution of halo stars to measure the tangential motion of Andromeda (Beaton et al., in prep).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Courteau, S., Widrow, L. M., McDonald, M., et al. 2011, ApJ, 739, 20Google Scholar
Dalcanton, J. J., Williams, B. F., Lang, D., et al. 2012, ApJ, 200, 18Google Scholar
Dorman, C. E., Guhathakurta, P., & Fardal, M. A.et al. 2012, ApJ, 752, 147Google Scholar
Dorman, C. E., Guhathakurta, P., & Seth, A. C.et al. 2015, ApJ, 803, 24Google Scholar
Dorman, C. E., Widrow, L. M., Guhathakurta, P., et al. 2013, ApJ, 779, 103Google Scholar
Fardal, M. A., Babul, A., Guhathakurta, P., Gilbert, K. M., & Dodge, C. 2008, ApJL, 682, L33Google Scholar
Fardal, M. A., Guhathakurta, P., Gilbert, K. M., et al. 2012, MNRAS, 423, 3134Google Scholar
Gilbert, K. M., Fardal, M., Kalirai, J. S., et al. 2007, ApJ, 668, 245CrossRefGoogle Scholar
Gilbert, K. M., Font, A. S., Johnston, K. V., & Guhathakurta, P. 2009, ApJ, 701, 776Google Scholar
Gilbert, K. M., Guhathakurta, P., Beaton, R. L., et al. 2012, ApJ, 760, 76Google Scholar
Gilbert, K. M., Guhathakurta, P., Kalirai, J. S., et al. 2006, ApJ, 652, 1188CrossRefGoogle Scholar
Gilbert, K. M., Guhathakurta, P., Kollipara, P., et al. 2009b, ApJ, 705, 1275CrossRefGoogle Scholar
Guhathakurta, P., Ostheimer, J. C., Gilbert, K. M., et al. 2005, ArXiv (arXiv:astro-ph/0502366)Google Scholar
Guhathakurta, P., Rich, R. M., Reitzel, D. B., et al. 2006, AJ, 131, 2497Google Scholar
Ho, N., Geha, M., Munoz, R. R., et al. 2012, ApJ, 758, 124Google Scholar
Howley, K. M., Geha, M., Guhathakurta, P., et al. 2008, ApJ, 683, 722CrossRefGoogle Scholar
Howley, K. M., Guhathakurta, P., van der Marel, R., Geha, M., et al. 2013, ApJ, 765, 65Google Scholar
Kalirai, J. S., Beaton, R. L., Geha, M. C., et al. 2010, ApJ, 711, 671Google Scholar
Kalirai, J. S., Gilbert, K. M., Guhathakurta, P., et al. 2006a, ApJ, 648, 389Google Scholar
Kalirai, J. S., Guhathakurta, P., Gilbert, K. M., et al. 2006b, ApJ, 641, 268Google Scholar
Kalirai, J. S., Zucker, D. B., Guhathakurta, P., et al. 2009, ApJ, 705, 1043Google Scholar
Majewski, S. R., Beaton, R. L., Patterson, R. J., Kalirai, J. S., et al. 2007, ApJL, 670, L9CrossRefGoogle Scholar
McConnachie, A. W., Irwin, M. J., Ibata, R. A., et al. 2009, Nature, 461, 66Google Scholar
Sohn, S. T., Anderson, J., & van der Marel, R. P. 2012, ApJ, 753, 7Google Scholar
Tollerud, E. J., Beaton, R. L., Geha, M. C., et al. 2012, ApJ, 752, 45CrossRefGoogle Scholar
van der Marel, R. P. & Guhathakurta, P. 2008, ApJ, 678, 187Google Scholar
van der Marel, R. P., Fardal, M., Besla, G., et al. 2012, ApJ, 753, 8Google Scholar
Vargas, L. C., Geha, M. C., & Tollerud, E. J. 2014a, ApJ, 790, 73Google Scholar
Vargas, L. C., Gilbert, K. M., Geha, M., et al. 2014b, ApJL, 797, L2Google Scholar