Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T13:42:32.987Z Has data issue: false hasContentIssue false

Quiescent and flaring lyman-α radiation of host stars and effects on exoplanets

Published online by Cambridge University Press:  09 September 2016

Jeffrey L. Linsky
Affiliation:
JILA, University of Colorado and NIST, Boulder CO 80309-0440USA email: jlinsky@jila.colorado.edu
Kevin France
Affiliation:
LASP, University of Colorado, Boulder CO 80309-0600USA email: kevin.france@colorado.edu
Yamila Miguel
Affiliation:
Laboratoire Lagrange, Observatoire de la Côte d'Azur, CNRS, Blvd de l'Observatoire, CS 3422, 06304 Nice cedex 4, France email: yami.miguel@gmail.com
Lisa Kaltenegger
Affiliation:
Carl Sagan Institute, Cornell University, Ithaca NY 14853USA email: lkaltenegger@astro.cornell.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lyman-α radiation dominates the ultraviolet spectra of G, K, and M stars and is a major photodissociation source for H2O, CO2, and CH4 in the upper atmospheres of exoplanets. We obtain intrinsic Lyman-α line fluxes for late-type stars by correcting for interstellar absorption or by scaling from other spectroscopic observables. When stars flare, all emission lines brighten by large factors as shown by HST spectra. We describe photochemical models of the atmosphere of the mini-Neptune GJ 436b (Miguel et al. 2015) that show the effects of flaring Lyman-α fluxes on atmospheric chemical abundances.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Allard, F., Allard, N. F., Homeier, D., Kielkopf, J., McCaughrean, M. J., & Spiegelman, F. 2007, A&A, 474, L21 Google Scholar
Fontenla, J. M., Harder, J., Livingston, W., Snow, M., & Woods, T. 2011, JGR, 116, D20108 Google Scholar
France, K., Linsky, J. L., Feng, T., Froning, C. S., & Roberge, A. 2012, ApJ, 750, 32 CrossRefGoogle Scholar
France, K., Froning, C. S., Linsky, J. L., Roberge, A., Stocke, J. T., Tian, F., Bushinsky, R., Désert, J.-M., Mauas, P., Vieytes, M., & Walkowitz, L. M. 2013, ApJ, 763, 149 Google Scholar
France, K., Herczeg, G. J., McJunkin, M., & Penton, S. V. 2014, ApJ, 794, 160 Google Scholar
France, K., Loyd, R. O. P., & Youngblood, S. 2016, ApJ, 820, 89 Google Scholar
Kopparapu, R. K., Kasting, J. E., & Zahnle, K. J. 2012, ApJ, 745, 77 CrossRefGoogle Scholar
Loyd, R. O. Parke & France, K. 2014, ApJS, 211, 9 Google Scholar
Linsky, J. L., France, K., & Ayres, T. 2013, ApJ, 766, 69 CrossRefGoogle Scholar
McCandliss, S. R., France, K., Osterman, S., Green, J. C., McPhate, J. B., & Wilkinson, E. 2010, ApJL, 709, L183 Google Scholar
Miguel, Y. & Kaltenegger, L., 2014, ApJ, 780, 166 Google Scholar
Miguel, Y., Kaltenegger, L., Linsky, J. L., & Rugheimer, S. 2015, MNRAS. 446, 345 Google Scholar
Rugheimer, S., Kaltenegger, L., Segura, A., Linsky, J., & Mohanty, S. 2015, ApJ, 809, 57 CrossRefGoogle Scholar
Ribas, I., Porto de Mello, G. F., Ferreira, L. D., Hébrard, E., Selsis, F., Catalán, S., Garcés, A., do Nascimento, J. D. Jr., & de Medeiros, J. R. 2010, ApJ, 714, 384 Google Scholar
Snow, M., McClintock, W. E., Rottman, G., & Woods, T. N. 2005, Solar Phys., 230, 295 Google Scholar
Wood, B. E., Redfield, S., Linsky, J. L., Müller, H.-R., & Zank, G. P. 2005, ApJS, 159, 118 CrossRefGoogle Scholar
Woods, T. N., et al. 2009, J. Geophys. Res., 36, L01101 Google Scholar