Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T02:48:18.306Z Has data issue: false hasContentIssue false

Quantification of the environment of cool stars using numerical simulations

Published online by Cambridge University Press:  16 August 2023

J. J. Chebly
Affiliation:
Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482, Potsdam, Germany Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, 14476, Germany
Julián D. Alvarado-Gómez
Affiliation:
Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482, Potsdam, Germany
Katja Poppenhaeger
Affiliation:
Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482, Potsdam, Germany Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, 14476, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars interact with their planets through gravitation, radiation, and magnetic fields. Although magnetic activity decreases with time, reducing associated high-energy (e.g., coronal XUV emission, flares), stellar winds persist throughout the entire evolution of the system. Their cumulative effect will be dominant for both the star and for possible orbiting exoplanets, affecting in this way the expected habitability conditions. However, observations of stellar winds in low-mass main sequence stars are limited, which motivates the usage of models as a pathway to explore how these winds look like and how they behave. Here we present the results from a grid of 3D state-of-the-art stellar wind models for cool stars (spectral types F to M). We explore the role played by the different stellar properties (mass, radius, rotation, magnetic field) on the characteristics of the resulting magnetized winds (mass and angular momentum losses, terminal speeds, wind topology) and isolate the most important dependencies between the parameters involved. These results will be used to establish scaling laws that will complement the lack of stellar wind observational constraints.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alvarado-Gómez, J. D., Hussain, G. A. J., Cohen, O., et al. 2016, A&A, 594, A95 CrossRefGoogle Scholar
Charbonneau, P. 2020, Living Reviews in Solar Physics, 17, 4 CrossRefGoogle Scholar
Cohen, O., Drake, J. J., Kashyap, V. L., Sokolov, I. V., & Gombosi, T. I. 2010, ApJ Letters, 723, L64 CrossRefGoogle Scholar
Cranmer, S. R., & Saar, S. H. 2011, ApJ, 741, 54 Google Scholar
Donati, J. F., & Brown, S. F. 1997, A&A, 326, 1135 Google Scholar
Donati, J. F., Howarth, I. D., Jardine, M. M., et al. 2006, MNRAS, 370, 629 CrossRefGoogle Scholar
Gaidos, E. J., Güdel, M., & Blake, G. A. 2000, GeoRL, 27, 501 CrossRefGoogle Scholar
Garraffo, C., Drake, J. J., & Cohen, O. 2015 a, ApJ, 813, 40CrossRefGoogle Scholar
Garraffo, C., Drake, J. J., & Cohen, O. 2015 b, ApJ Letters, 807, L6Google Scholar
Garraffo, C., Drake, J. J., Dotter, A., et al. 2018, ApJ, 862, 90 CrossRefGoogle Scholar
Johnstone, C. P., Güdel, M., Brott, I., & Lüftinger, T. 2015, A&A, 577, A28 Google Scholar
Kislyakova, K. G., Holmström, M., Lammer, H., Odert, P., & Khodachenko, M. L. 2014, Science, 346, 981 CrossRefGoogle Scholar
Kochukhov, O., & Piskunov, N. 2002, A&A, 388, 868 Google Scholar
Marsden, S., Petit, P., Jeffers, S., et al. 2014, in Magnetic Fields throughout Stellar Evolution, ed. Petit, P., Jardine, M., & Spruit, H. C., Vol. 302, 138–141Google Scholar
Oran, R., van der Holst, B., Landi, E., et al. 2013, ApJ, 778, 176 CrossRefGoogle Scholar
Reiners, A. 2012, Living Reviews in Solar Physics, 9, 1 CrossRefGoogle Scholar
Réville, V., Brun, A. S., Strugarek, A., et al. 2015, ApJ, 814, 99 Google Scholar
Sachdeva, N., van der Holst, B., Manchester, W. B., et al. 2019, ApJ, 887, 83 CrossRefGoogle Scholar
See, V., Matt, S. P., Folsom, C. P., et al. 2019, ApJ, 876, 118 Google Scholar
Suzuki, T. K. 2006, ApJ Letters, 640, L75CrossRefGoogle Scholar
Tóth, G., van der Holst, B., Sokolov, I. V., et al. 2012, Journal of Computational Physics, 231, 870 CrossRefGoogle Scholar
Van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81 Google Scholar
Vidotto, A. A., Gregory, S. G., Jardine, M., et al. 2014, MNRAS, 441, 2361 CrossRefGoogle Scholar
Wargelin, B. J., & Drake, J. J. 2002, ApJ, 578, 503 CrossRefGoogle Scholar
Wood, B. E. 2004, Living Reviews in Solar Physics, 1, 2 CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Redfield, S., et al. 2021, ApJ, 915, 37 CrossRefGoogle Scholar
Wright, N. J., Newton, E. R., Williams, P. K. G., Drake, J. J., & Yadav, R. K. 2018, MNRAS, 479, 2351 CrossRefGoogle Scholar