Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-wb78c Total loading time: 0.302 Render date: 2021-06-23T13:04:04.308Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Pollux: a stable weak dipolar magnetic field but no planet?

Published online by Cambridge University Press:  07 August 2014

Michel Aurière
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu
Renada Konstantinova-Antova
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu Institute of Astronomy and NAO, Bulgarian Academy of Sciences, Sofia, Bulgaria
Olivier Espagnet
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu
Pascal Petit
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu
Thierry Roudier
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu
Corinne Charbonnel
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu Geneva Observatory, University of Geneva, Versoix, Switzerland
Jean-François Donati
Affiliation:
IRAP, Université de Toulouse & CNRS, Toulouse, France email: michel.auriere@irap.omp.eu
Gregg A. Wade
Affiliation:
Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Pollux is considered as an archetype of a giant star hosting a planet: its radial velocity (RV) presents sinusoidal variations with a period of about 590 d, which have been stable for more than 25 years. Using ESPaDOnS and Narval we have detected a weak (sub-gauss) magnetic field at the surface of Pollux and followed up its variations with Narval during 4.25 years, i.e. more than for two periods of the RV variations. The longitudinal magnetic field is found to vary with a sinusoidal behaviour with a period close to that of the RV variations and with a small shift in phase. We then performed a Zeeman Doppler imaging (ZDI) investigation from the Stokes V and Stokes I least-squares deconvolution (LSD) profiles. A rotational period is determined, which is consistent with the period of variations of the RV. The magnetic topology is found to be mainly poloidal and this component almost purely dipolar. The mean strength of the surface magnetic field is about 0.7 G. As an alternative to the scenario in which Pollux hosts a close-in exoplanet, we suggest that the magnetic dipole of Pollux can be associated with two temperature and macroturbulent velocity spots which could be sufficient to produce the RV variations. We finally investigate the scenarii of the origin of the magnetic field which could explain the observed properties of Pollux.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aurière, M, Wade, G. A., Silvester, J., Lignières, et al. 2007, A&A, 475, 1053Google Scholar
Aurière, M., Wade, G. A., Konstantinova-Antova, R.et al. 2009, A&A, 504, 231Google Scholar
Aurière, M., Donati, J.-F., Konstantinova-Antova, R.et al. 2010, A&A, 516, L2Google Scholar
Boisse, I., Bonfils, X., & Santos, N.-C. 2012, A&A, 545, 109Google Scholar
Donati, J.-F., Semel, M., Carter, B. D.et al. 1997, MNRAS, 291, 658CrossRefGoogle Scholar
Donati, J.-F., Catala, C., Landstreet, J., & Petit, P. 2006, in: Casini, R., Lites, B., eds, Solar Polarization Workshop n4 ASPC series, 358, 362Google Scholar
Fares, R., Moutou, C., Donati, J.-F.et al. 2013, MNRAS, 435, 1451CrossRefGoogle Scholar
Hatzes, A. P. & Cochran, W. D. 2000, AJ, 120, 979CrossRefGoogle Scholar
Hatzes, A. P., Cochran, W. D., Endl, M.et al. 2006, A&A, 457, 335Google Scholar
Lagarde, N., Decressin, T., Charbonnel, C.et al. 2012, A&A 542, 62Google Scholar
Lee, B.-C., Han, I., Park, M.-G.et al. 2012, A&A 543, 37Google Scholar
Morin, J., Donati, J.-F., Forveille, et al. 2008, MNRAS, 384, 77CrossRefGoogle Scholar
Petit, P., Donati, J-F., Collier, , & Cameron, A. 2002, MNRAS, 334, 374CrossRefGoogle Scholar
Pont, F. 2009, MNRAS, 396, 1789CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pollux: a stable weak dipolar magnetic field but no planet?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pollux: a stable weak dipolar magnetic field but no planet?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pollux: a stable weak dipolar magnetic field but no planet?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *