Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:42:57.145Z Has data issue: false hasContentIssue false

PION: Simulations of Wind-Blown Nebulae

Published online by Cambridge University Press:  20 January 2023

Jonathan Mackey
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland DIAS Dunsink Observatory, Dunsink Lane, D15 XR2R, Ireland
Samuel Green
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland DIAS Dunsink Observatory, Dunsink Lane, D15 XR2R, Ireland
Maria Moutzouri
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland DIAS Dunsink Observatory, Dunsink Lane, D15 XR2R, Ireland
Thomas J. Haworth
Affiliation:
Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
Robert D. Kavanagh
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
Maggie Celeste
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
Robert Brose
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland DIAS Dunsink Observatory, Dunsink Lane, D15 XR2R, Ireland
Davit Zargaryan
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland DIAS Dunsink Observatory, Dunsink Lane, D15 XR2R, Ireland
Ciarán O’Rourke
Affiliation:
Irish Centre for High-End Computing (ICHEC), NUI Galway, Galway City, Ireland

Abstract

We present an overview of PION, an open-source software project for solving radiation-magnetohydrodynamics equations on a nested grid, aimed at modelling asymmetric nebulae around massive stars. A new implementation of hybrid OpenMP/MPI parallel algorithms is briefly introduced, and improved scaling is demonstrated compared with the current release version. Three-dimensional simulations of an expanding nebula around a Wolf-Rayet star are then presented and analysed, similar to previous 2D simulations in the literature. The evolution of the emission measure of the gas and the X-ray surface brightness are calculated as a function of time, and some qualitative comparison with observations is made.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Comerón, F., & Kaper, L. 1998, A&A, 338, 273 10.1097/00005768-199805001-01922CrossRefGoogle Scholar
Falle, S., Komissarov, S., & Joarder, P. 1998, MNRAS, 297, 26510.1046/j.1365-8711.1998.01506.xCrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2003, ApJ, 594, 888 10.1086/376937CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2006, ApJ, 638, 262 10.1086/498734CrossRefGoogle Scholar
García-Segura, G., Langer, N., & Mac Low, M. 1996, A&A, 316, 133 Google Scholar
Garcia-Segura, G., & Mac Low, M.-M. 1995, ApJ, 455, 160 10.1086/176564CrossRefGoogle Scholar
Green, S., Mackey, J., Haworth, T. J., Gvaramadze, V. V., & Duffy, P. 2019, A&A, 625, A4 10.1051/0004-6361/201834832CrossRefGoogle Scholar
Grosdidier, Y., Moffat, A. F. J., Joncas, G., & Acker, A. 1998, ApJL, 506, L127 10.1086/311647CrossRefGoogle Scholar
Harries, T. J., Haworth, T. J., Acreman, D., Ali, A., & Douglas, T. 2019, Astronomy and Computing, 27, 63 10.1016/j.ascom.2019.03.002CrossRefGoogle Scholar
Humphreys, R. M., Davidson, K., Richards, A. M. S., Ziurys, L. M., Jones, T. J., & Ishibashi, K. 2021, AJ, 161, 98 10.3847/1538-3881/abd316CrossRefGoogle Scholar
Langer, N. 2012, ARA&A, 50, 107 10.1146/annurev-astro-081811-125534CrossRefGoogle Scholar
Mackey, J. 2012, A&A, 539, A147 10.1051/0004-6361/201117984CrossRefGoogle Scholar
Mackey, J., Green, S., Moutzouri, M., Haworth, T. J., Kavanagh, R. D., Zargaryan, D., & Celeste, M. 2021, MNRAS, 504, 983 10.1093/mnras/stab781CrossRefGoogle Scholar
Mackey, J., Mohamed, S., Neilson, H. R., Langer, N., & Meyer, D. M.-A. 2012, ApJL, 751, L10 10.1088/2041-8205/751/1/L10CrossRefGoogle Scholar
Meyer, D. M.-A., Mackey, J., Langer, N., Gvaramadze, V. V., Mignone, A., Izzard, R. G., & Kaper, L. 2014, MNRAS, 444, 2754 10.1093/mnras/stu1629CrossRefGoogle Scholar
Meyer, D. M.-A., Mignone, A., Kuiper, R., Raga, A. C., & Kley, W. 2017, MNRAS, 464, 3229 10.1093/mnras/stw2537CrossRefGoogle Scholar
Meyer, D. M. A., Petrov, M., & Pohl, M. 2020, MNRAS, 493, 3548 10.1093/mnras/staa554CrossRefGoogle Scholar
O’Gorman, E., et al. 2015, A&A, 573, L1 Google Scholar
Pogorelov, N. V., Zank, G. P., & Ogino, T. 2004, ApJ, 614, 1007 10.1086/423798CrossRefGoogle Scholar
Sana, H., et al. 2012, Science, 337, 444 10.1126/science.1223344CrossRefGoogle Scholar
Smith, N. 2014, ARA&A, 52, 487 10.1146/annurev-astro-081913-040025CrossRefGoogle Scholar
Toalá, J. A., Marston, A. P., Guerrero, M. A., Chu, Y. H., & Gruendl, R. A. 2017, ApJ, 846, 76 10.3847/1538-4357/aa8554CrossRefGoogle Scholar
van Marle, A. J., Meliani, Z., & Marcowith, A. 2015, A&A, 584, A49 10.1051/0004-6361/201425230CrossRefGoogle Scholar
Yorke, H. W., & Kaisig, M. 1995, Computer Physics Communications, 89, 29 10.1016/0010-4655(94)00184-4CrossRefGoogle Scholar