Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-6zkrn Total loading time: 0.233 Render date: 2023-02-02T13:11:38.278Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Photospheric thermal radiation from GRB collapsar jets

Published online by Cambridge University Press:  05 September 2012

Akira Mizuta
Affiliation:
Theory Center, Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801, Japan email: mizuta@post.kek.jp
Shigehiro Nagataki
Affiliation:
Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 email: nagataki@yukawa.kyoto-u.ac.jp
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photospheric thermal radiation components from gamma-ray burst (GRB) jets are estimated based on relativistic hydrodynamic simulations of jet propagation. The light curves and spectra are derived, considering viewing angle effects. The light curves exhibit several seconds time variability and the luminosity is as large as that of GRB prompt emission. For observers at a viewing angle of several degrees the spectra below the peak energy are much softer than that of Planck distribution and close to typical GRB spectrum. Whereas the spectra for observers at small viewing angle are hard and close to Planck distribution. Numerical Amati and Yonetoku relations are reproduced.

Type
Poster Papers
Copyright
Copyright © International Astronomical Union 2012

References

Amati, L., et al. 2002, A&A, 390, 81Google Scholar
Lazzati, D., Morsony, B. J., & Begelman, M. C. 2009, ApJ, 700, L47CrossRefGoogle Scholar
Lazzati, D., Morsony, B. J., & Begelman, M. C. 2011, ApJ, 732, 34CrossRefGoogle Scholar
Mizuta, A., Nagataki, S., & Aoi, J. 2011, ApJ, 732, 26CrossRefGoogle Scholar
Nagakura, H., Ito, H., Kiuchi, K., & Yamada, S. 2011, ApJ, 731, 80CrossRefGoogle Scholar
Pe'er, A. & Ryde, F. 2011, ApJ, 732, 49CrossRefGoogle Scholar
Ryde, F., et al. 2010, ApJ, 709, L172CrossRefGoogle Scholar
Ryde, F., Pe'Er, A., Nymark, T., et al. 2011, MNRAS, 415, 3693CrossRefGoogle Scholar
Serino, M., Yoshida, A., Kawai, N., et al. 2011, PASJ, 63, 1035CrossRefGoogle Scholar
Woosley, S. E. & Heger, A. 2006, ApJ, 637, 914CrossRefGoogle Scholar
Zhang, B.-B., Zhang, B., Liang, E.-W., et al. 2011, ApJ, 730, 141CrossRefGoogle Scholar
Yonetoku, D., et al. 2004, ApJ, 609, 935CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Photospheric thermal radiation from GRB collapsar jets
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Photospheric thermal radiation from GRB collapsar jets
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Photospheric thermal radiation from GRB collapsar jets
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *