Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T12:04:30.031Z Has data issue: false hasContentIssue false

The origin of the IR emission of low-luminosity AGN

Published online by Cambridge University Press:  25 July 2014

R. E. Mason
Affiliation:
Gemini Observatory, Northern Operations Ctr, 670 N. A'ohoku Place, Hilo, HI 96720, USA.
C. Ramos Almeida
Affiliation:
Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife, Spain
N. A. Levenson
Affiliation:
Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena, Chile
R. Nemmen
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; CRESST/University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
A. Alonso Herrero
Affiliation:
Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005 Santander, Spain; Augusto González Linares Senior Research Fellow
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To test recent suggestions that the infrared emission of low-luminosity AGN arises in a truncated thin accretion disk, we compare recent, high-resolution IR data with published SED model fits that include emission from the truncated disk. We also fit the data with clumpy torus and optically thin dust shell models. These comparisons suggest that dust can better account for the IR emission of the objects in question than can the truncated disk. That optically thin models give a good fit to the data may support a scenario in which the torus of the AGN unified model does not persist in low accretion rate AGN.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Asensio Ramos, A. & Ramos Almeida, C. 2009, ApJ, 696, 2075Google Scholar
Elitzur, M. & Shlosman, I. 2006, ApJL, 648, L101CrossRefGoogle Scholar
Ho, L. C. 2008, ARA&A, 46, 475Google Scholar
Ivezic, Z., Nenkova, M., & Elitzur, M. 1999, ArXiv:astro-ph/9910475Google Scholar
Mason, R. E., Lopez-Rodriguez, E., Packham, C., Alonso-Herrero, A., Levenson, N. A., Radomski, J., Ramos Almeida, C., Colina, L., Elitzur, M., Aretxaga, I., Roche, P. F., & Oi, N. 2012, AJ, 144, 11Google Scholar
Mason, R. E., Ramos Almeida, C., Levenson, N. A., Nemmen, R. & Alonso-Herrero, A. 2013, ApJ, 777, 164Google Scholar
Nemmen, R. S., Storchi-Bergmann, T., & Eracleous, M. 2013, ArXiv:1312.1982Google Scholar
Nenkova, M., Sirocky, M. M., Ivezić, Ž., & Elitzur, M. 2008, ApJ, 685, 147CrossRefGoogle Scholar
Taam, R. E., Liu, B. F., Yuan, W., & Qiao, E. 2012, ApJ, 759, 65CrossRefGoogle Scholar
Yuan, F. & Narayan, R. 2004, ApJ, 612, 724CrossRefGoogle Scholar