Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-xr9nb Total loading time: 0.265 Render date: 2021-09-23T04:20:01.949Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Organic chemistry in circumstellar envelopes: Setting the stage for prebiotic synthesis

Published online by Cambridge University Press:  01 February 2008

Lucy M. Ziurys*
Affiliation:
Depts. of Chemistry and Astronomy, Arizona Radio Observatory, Laplace Center for Astrobiology, and Steward Observatory, University of Arizona933 N. Cherry Ave. Tucson, AZ 85721USA email: lziurys@as.arizona.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the few carbon-rich environments found in interstellar space is the ejecta of asymptotic giant branch (AGB) stars. Such material, which forms a circumstellar envelope, becomes enriched in carbon due to “dredge-up” phenomena associated with nucleosynthesis. A unique organic synthesis flourishes in the gas phase in these envelopes, and radio and millimeter observations have identified a wide range of C-bearing compounds, including long acetylenic chains such as HC5N, HC7N, C4H, C6H, C8H, C6H, C8H, and C3O. Oxygen-rich envelopes also have a non-negligible carbon chemistry, fostering species such as HCN and HCO+. Phosphorus chemistry appears to be active as well in circumstellar shells, as evidenced by the recent detections of HCP, CCP, and PO. Radio observations also indicate that some fraction of the circumstellar molecular material survives into the planetary nebula stage, and then becomes incorporated into diffuse, and eventually, dense clouds. The complex organic molecules found in dense clouds such as Sgr B2(N) may be the products of “seed” material that can be traced back to the carbon-enriched circumstellar gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Agúndez, M., Cernicharo, J., & Guélin, M. 2007, ApJ (Letters), 662, L91CrossRefGoogle Scholar
Anders, E. 1989, Nature, 342, 255CrossRefGoogle Scholar
Bachiller, R., Forveille, T., Huggins, P. J., & Cox, P. 1997, A&A, 324, 1123Google Scholar
Benner, Ricardo, & Carrigan, 2004, Curr. Opin. Chem. Bio., 8, 672CrossRefGoogle Scholar
Carigi, L., Peimbert, M., Esteban, C., & Garcia-Rojas, J. 2005, ApJ, 623, 213CrossRefGoogle Scholar
Cernicharo, J., Guélin, M., Agúndez, M., Kawaguchi, K., McCarthy, M., & Thaddeus, P. 2007, A&A (Letters), 467, L37Google Scholar
Cernicharo, J., Guélin, M., & Kahane, C. 2000, A&AS, 142, 181Google Scholar
Cherchneff, I. 2006, A&A, 456, 1001Google Scholar
Chyba, C. F. & Sagan, C. 1992, Nature, 355, 125CrossRefGoogle Scholar
Eschenmoser, A. 1999, Science, 284, 2118CrossRefGoogle Scholar
Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H., & de Wit, M. 2004, Science, 304, 578CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466CrossRefGoogle Scholar
Guélin, M., Cernicharo, J., Paubert, G., & Turner, B. E. 1990, A&A (Letters), 230, L9Google Scholar
Halfen, D. T., Clouthier, D. J., & Ziurys, L. M. 2008, ApJ (Letters), 677, L101CrossRefGoogle Scholar
Harper, C. L. Jr., & Jacobsen, S. B. 1996, Science, 273, 1814CrossRefGoogle Scholar
Herwig, F. 2006, Proc. of the Int. Sym.on Nuclear Astrophys. IX. CERN, p. 206Google Scholar
Hohsaka, T. & Sisido, M. 2002, Curr. Opin. Chem. Bio., 6, 809CrossRefGoogle Scholar
Hora, J. L., Latter, W. B., Smith, H. A., & Marengo, M. 2006, ApJ, 652, 426CrossRefGoogle Scholar
Howe, D. A., Hartquist, T. W., & Williams, D. A. 1994, MNRAS, 271, 811CrossRefGoogle Scholar
Kawaguchi, K., Kasai, Y., Ishikawa, S.-I., & Kaifu, N. 1995, PASJ, 47, 853Google Scholar
Keller, L. P., Thomas, K. L., Clayton, R. N., Mayeda, T. K., Dehart, J. M., & McKay, D. S. 1994, GeCoA, 58, 5589CrossRefGoogle Scholar
Kwok, S. 2004, Nature, 430, 985CrossRefGoogle Scholar
Liszt, H., Lucas, R., & Pety, J. 2006, A&A, 448, 253Google Scholar
Maier, J. P., Lakin, N. M., Walker, G. A. H., & Bohlender, D. A. 2001, ApJ, 553, 267CrossRefGoogle Scholar
Mamon, G. A., Glassgold, A. E., & Omont, A. 1987, ApJ, 323, 306CrossRefGoogle Scholar
Milam, S. N., Halfen, D. T., Tenenbaum, E. D., Apponi, A. J., Woolf, N. J., & Ziurys, L. M. 2008b, ApJ, in pressGoogle Scholar
Milam, S. N., Woolf, N. J., & Ziurys, L. M. 2008a, ApJ, in pressGoogle Scholar
Mumma, M. J., Disanti, M. A., dello Russo, N., Magee-Sauer, K., Gibb, E., & Novak, R. 2002, Proceedings of Asteroids, Comets, Meteors, p. 753Google Scholar
Pardo, J. R., Cernicharo, J., Goicoechea, J. R., Guélin, M., & Ramos, A. A. 2007, ApJ, 661, 250CrossRefGoogle Scholar
Pasek, M. A. & Lauretta, D. S. 2005, Astrobiology, 5, 515CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., & Alexandre, M. R. 2008, in pressGoogle Scholar
Pulliam, R. & Ziurys, L. M. 2008, in prep.Google Scholar
Remijan, A. J., Hollis, J. M., Lovas, F. J., Cordiner, M. A., Millar, T. J., Markwick-Kemper, A. J., & Jewell, P. R. 2007, ApJ (Letters), 664, L47CrossRefGoogle Scholar
Stanghellini, L., Shaw, R. A., Balick, B., & Blades, J. C. 2000, ApJ (Letters), 534, L167CrossRefGoogle Scholar
Tenenbaum, E. D., Apponi, A. J., Ziurys, L. M., Agúndez, M., Cernicharo, J., Pardo, J. R., & Guélin, M. 2006, ApJ (Letters), 649, L17CrossRefGoogle Scholar
Tenenbaum, E. D., Milam, S. N., Apponi, A. J., Woolf, N. J., Ziurys, L. M., & Shóier, F. 2008a, in prep.Google Scholar
Tenenbaum, E. D., Milam, S. N., Xilouris, K., Woolf, N. J., & Ziurys, L. M. 2008b, in prep.Google Scholar
Tenenbaum, E. D., Woolf, N. J., & Ziurys, L. M. 2007, ApJ (Letters), 666, L29CrossRefGoogle Scholar
Truong-Bach, , Graham, D., & Nguyen-Q-Rieu, 1993, A&A, 277, 133Google Scholar
Turner, B. E., Tsuji, T., Bally, J., Guélin, M., & Cernicharo, J. 1990, ApJ, 365, 569CrossRefGoogle Scholar
van Dishoeck, E. F. & Black, J. H. 1986, ApJS, 62, 109CrossRefGoogle Scholar
Yang, Z., Sismour, A. M., Sheng, P., Puskar, N. L., & Benner, S. A. 2007, Nucleic Acids Res., 35, 4238CrossRefGoogle Scholar
Young, K., Cox, P., Huggins, P. J., Forveille, T., & Bachiller, R. 1999, ApJ, 522, 387CrossRefGoogle Scholar
Ziurys, L. M. 1987, ApJ (Letters), 321, L81CrossRefGoogle Scholar
Ziurys, L. M. 2006, PNAS, 103, 12274CrossRefGoogle Scholar
Ziurys, L. M., Milam, S. N., Apponi, A. J., & Woolf, N. J. 2007, Nature, 447, 1094CrossRefGoogle Scholar
Ziurys, L. M., Tenenbaum, E. D., Milam, S. N., & Woolf, N. J. 2008, ApJ, submittedGoogle Scholar
You have Access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Organic chemistry in circumstellar envelopes: Setting the stage for prebiotic synthesis
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Organic chemistry in circumstellar envelopes: Setting the stage for prebiotic synthesis
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Organic chemistry in circumstellar envelopes: Setting the stage for prebiotic synthesis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *