Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-l2zqg Total loading time: 0.199 Render date: 2021-09-23T00:48:48.499Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On the Relation Between Black Hole Mass and Velocity Dispersion in Type 1 and Type 2 AGN

Published online by Cambridge University Press:  03 June 2010

Kalliopi M. Dasyra
Affiliation:
Spitzer Science Center, California Institute of Technology, USA Service d'Astrophysique, Commissariat à l'Energie Atomique, France
Bradley M. Peterson
Affiliation:
Ohio State University, USA
Linda J. Tacconi
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Germany
Hagai Netzer
Affiliation:
Wise Observatory, Israel
Luis C. Ho
Affiliation:
Carnegie Observatories, USA
George Helou
Affiliation:
Spitzer Science Center, California Institute of Technology, USA
Lee Armus
Affiliation:
Spitzer Science Center, California Institute of Technology, USA
Dieter Lutz
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Germany
Richard Davies
Affiliation:
Max Planck Institute for Extraterrestrial Physics, Germany
Linda Watson
Affiliation:
Ohio State University, USA
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results from infrared spectroscopic projects that aim to test the relation between the mass of a black hole MBH and the velocity dispersion of the stars in its host-galaxy bulge. We demonstrate that near-infrared, high-resolution spectroscopy assisted by adaptive optics is key in populating the high-luminosity end of the relation. We show that the velocity dispersions of mid-infrared, high-ionization lines originating from gas in the narrow-line region of the active galactic nucleus follow the same relation. This result provides a way of inferring MBH estimates for the cosmologically significant population of obscured, type 2 AGN that can be applicable to data from spectrographs on next-generation infrared telescopes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Antonucci, R. R. J. & Miller, J. S. 1985, ApJ, 297, 621CrossRefGoogle Scholar
Collin, S., Kawaguchi, T., Peterson, B. M., & Vestergaard, M. 2006 A&A, 456, 75Google Scholar
Dasyra, K. M., et al. 2007, ApJ, 657, 102CrossRefGoogle Scholar
Dasyra, K. M., et al. 2008, ApJ, 674, L9CrossRefGoogle Scholar
Davies, R., et al. 2006, ApJ, 646, 754CrossRefGoogle Scholar
Elvis, M., et al. 1994, ApJS, 95, 1CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Gaskell, C. M. 2009 [arXiv:0908.0328]Google Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Genzel, R., Pichon, C., Ekhart, A., Gerhard, O., & Ott, T. 2000, MNRAS, 317, 348CrossRefGoogle Scholar
Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79Google Scholar
Greene, J. E. & Ho, L. C. 2005, ApJ, 627, 721CrossRefGoogle Scholar
Grupe, D. 2000, New Astron. Revs., 44, 455CrossRefGoogle Scholar
Gültekin, K., et al. 2009, ApJ, 698, 198CrossRefGoogle Scholar
Kauffmann, G., et al. 2003, MNRAS, 346, 1055CrossRefGoogle Scholar
Kormendy, J., et al. 1998, AJ, 115, 1823CrossRefGoogle Scholar
Lacy, M., et al. 2007, AJ, 133, 186CrossRefGoogle Scholar
Marconi, A., Risaliti, G., Gilli, R., Hunt, L. K., Maiolino, R., & Salvati, M. 2004, MNRAS, 351, 169CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, P. 1995, Nature, 373, 127CrossRefGoogle Scholar
Nelson, C., Green, R. F., Bower, G., Gebhardt, K., & Weistrop, D. 2004, ApJ, 615, 652CrossRefGoogle Scholar
Netzer, H. 2009, MNRAS, 399, 1907CrossRefGoogle Scholar
Onken, C. A., Ferrarese, L., Merritt, D., Peterson, B. M., Pogge, R. W., Vestergaard, M., & Wandel, A. 2004, ApJ, 615, 645CrossRefGoogle Scholar
Peterson, B. M., et al. 2004, ApJ, 613, 682CrossRefGoogle Scholar
Salviander, S., Shields, G., Gebhardt, K., & Bonning, E. 2007, ApJ, 662, 131CrossRefGoogle Scholar
Shields, G. A., Gebhardt, K., Salviander, S., Wills, B. J., Xie, B., Brotherton, M. S., Yuan, J., & Dietrich, M. 2003, ApJ, 583, 124CrossRefGoogle Scholar
Schweitzer, M., et al. 2006, ApJ, 649, 79CrossRefGoogle Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Treu, T., Woo, J.-H., Malkan, M., & Blandford, R. 2007, ApJ, 667, 117CrossRefGoogle Scholar
Watson, L., et al. 2008, ApJ, 682, L21CrossRefGoogle Scholar
Woo, J.-H., Treu, T., Malkan, M., & Blandford, R. 2008, ApJ, 681, 925CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Relation Between Black Hole Mass and Velocity Dispersion in Type 1 and Type 2 AGN
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Relation Between Black Hole Mass and Velocity Dispersion in Type 1 and Type 2 AGN
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Relation Between Black Hole Mass and Velocity Dispersion in Type 1 and Type 2 AGN
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *