Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:57:29.424Z Has data issue: false hasContentIssue false

On the H i Content of MaNGA Major Merger Pairs

Published online by Cambridge University Press:  09 June 2023

Qingzheng Yu
Affiliation:
Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China; email: fangt@xmu.edu.
Taotao Fang
Affiliation:
Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China; email: fangt@xmu.edu.
Shuai Feng
Affiliation:
College of Physics, Hebei Normal University, 20 South Erhuan Road, Shijiazhuang, Hebei 050024, China Hebei Key Laboratory of Photophysics Research and Application, Shijiazhuang, Hebei 050024, China
Bo Zhang
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing 100101, China
C. Kevin Xu
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences (NAOC), Beijing 100101, China Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories, CAS, Beijing 100101, China
Yunting Wang
Affiliation:
Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China; email: fangt@xmu.edu. Department of Physics and Astronomy, University of British Columbia, 6225 Agricultural Road, Vancouver, V6T 1Z1, Canada
Lei Hao
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Abstract

To study the role of H i content in galaxy interactions, we select galaxy pairs and control galaxies from the SDSS-IV MaNGA IFU survey, adopting kinematic asymmetry as a new effective indicator to describe the merger stage. With archival data from the HI-MaNGA survey and new observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we investigate the differences in H i gas fraction (fH i), star formation rate (SFR), and H i star formation efficiency (SFEH i) between pairs and controls. Our results suggest that on average the H i gas fraction of major-merger pairs is marginally decreased by ∼ 15% relative to isolated galaxies, and paired galaxies during pericentric passage show weakly decreased fH i (−0.10 ± 0.05 dex), significantly enhanced SFR (0.42 ± 0.11 dex), and SFEH i (0.48 ± 0.12 dex). We propose the marginally detected H i depletion may originate from the gas consumption in fueling the enhanced H2 reservoir of galaxy pairs.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrera-Ballesteros, J. K., et al., 2015, A&A, 582, A21 Google Scholar
Bloom, J. V., et al., 2018, MNRAS, 476, 2339 CrossRefGoogle Scholar
Casasola, V., Bettoni, D., Galletta, G., 2004, A&A, 422, 941 Google Scholar
Catinella, B., et al., 2010, MNRAS, 403, 683 CrossRefGoogle Scholar
Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R., Dekel, A., 2008, MNRAS, 384, 386 CrossRefGoogle Scholar
Di Matteo, P., Combes, F., Melchior, A. L., Semelin, B., 2007, A&A, 468, 61 Google Scholar
Ellison, S. L., Patton, D. R., Simard, L., McConnachie, A. W., 2008, AJ, 135, 1877 CrossRefGoogle Scholar
Ellison, S. L., Fertig, D., Rosenberg, J. L., Nair, P., Simard, L., Torrey, P., Patton, D. R., 2015, MNRAS, 448, 221 CrossRefGoogle Scholar
Ellison, S. L., Catinella, B., Cortese, L., 2018, MNRAS, 478, 3447 CrossRefGoogle Scholar
Feng, S., Shen, S.-Y., Yuan, F.-T., Riffel, R. A., Pan, K., 2020, ApJL, 892, L20 CrossRefGoogle Scholar
Georgakakis, A., Forbes, D. A., Norris, R. P., 2000, MNRAS, 318, 124 CrossRefGoogle Scholar
Hani, M. H., Sparre, M., Ellison, S. L., Torrey, P., Vogelsberger, M., 2018, MNRAS, 475, 1160 CrossRefGoogle Scholar
Hibbard, J. E., van Gorkom, J. H., 1996, AJ, 111, 655 CrossRefGoogle Scholar
Hung, C.-L., Hayward, C. C., Smith, H. A., Ashby, M. L. N., Lanz, L., Martínez-Galarza J. R., Sanders D. B., Zezas A., 2016, ApJ, 816, 99CrossRefGoogle Scholar
Janowiecki, S., Catinella, B., Cortese, L., Saintonge, A., Brown, T., Wang, J., 2017, MNRAS, 466, 4795 Google Scholar
Kaneko, H., Kuno, N., Iono, D., Tamura, Y., Tosaki, T., Nakanishi, K., Sawada, T., 2017, PASJ, 69, 66 CrossRefGoogle Scholar
Lisenfeld, U., Xu, C. K., Gao, Y., Domingue, D. L., Cao, C., Yun, M. S., Zuo, P., 2019, A&A, 327, A107 Google Scholar
Moreno, J., et al., 2019, MNRAS, 485, 1320 CrossRefGoogle Scholar
Moster, B. P., Macci‘o A. V., Somerville R. S., Naab T., Cox T. J., 2011, MNRAS, 415, 3750CrossRefGoogle Scholar
Pan, H.-A., et al., 2018, ApJ, 868, 132 Pan H.-A., et al., 2019, ApJ, 881, 119CrossRefGoogle Scholar
Patton, D. R., Torrey, P., 240 Ellison S. L., Mendel J. T., Scudder J. M., 2013, MNRAS, 433, L59CrossRefGoogle Scholar
Satyapal, S., Ellison, S. L., McAlpine, W., Hickox, R. C., Patton, D. R., Mendel, J. T., 2014, MNRAS, 441, 1297 CrossRefGoogle Scholar
Scudder, J. M., Ellison, S. L., Torrey, P., Patton, D. R., Mendel, J. T., 2012, MNRAS, 426, 549 CrossRefGoogle Scholar
Smith, B. J., Campbell, K., Struck, C., Soria, R., Swartz, D., Magno, M., Dunn, B., Giroux, M. L., 2018, AJ, 155, 81 CrossRefGoogle Scholar
Soares, D. S. L., 2007, AJ, 134, 71 CrossRefGoogle Scholar
Stark, D. V., et al., 2021, MNRAS, 503, 1345 CrossRefGoogle Scholar
Tonnesen, S., Cen, R., 2012, MNRAS, 425, 2313 CrossRefGoogle Scholar
Torrey, P., Cox, T. J., Kewley, L., Hernquist, L., 2012, ApJ, 746, 108 CrossRefGoogle Scholar
Violino, G., Ellison, S. L., Sargent, M., Coppin, K. E. K., Scudder, J. M., Mendel, T. J., Saintonge, A., 2018, MNRAS, 476, 2591 CrossRefGoogle Scholar
Zuo, P., Xu, C. K., Yun, M. S., Lisenfeld, U., Li, D., Cao, C., 2018, ApJS, 237, 2 CrossRefGoogle Scholar