Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T04:55:16.266Z Has data issue: false hasContentIssue false

New Insights into the Puzzling P-Cygni Profiles of Magnetic Massive Stars

Published online by Cambridge University Press:  28 July 2017

Christiana Erba
Affiliation:
Deptartment of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE, 19716, USA
Alexandre David-Uraz
Affiliation:
Deptartment of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE, 19716, USA Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32904, USA
Véronique Petit
Affiliation:
Deptartment of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE, 19716, USA Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32904, USA
Stanley P. Owocki
Affiliation:
Deptartment of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE, 19716, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic massive stars comprise approximately 10% of the total OB star population. Modern spectropolarimetry shows these stars host strong, stable, large-scale, often nearly dipolar surface magnetic fields of 1 kG or more. These global magnetic fields trap and deflect outflowing stellar wind material, forming an anisotropic magnetosphere that can be probed with wind-sensitive UV resonance lines. Recent HST UV spectra of NGC 1624-2, the most magnetic O star observed to date, show atypically unsaturated P-Cygni profiles in the Civ resonant doublet, as well as a distinct variation with rotational phase. We examine the effect of non-radial, magnetically-channeled wind outflow on P-Cygni line formation, using a Sobolev Exact Integration (SEI) approach for direct comparison with HST UV spectra of NGC 1624-2. We demonstrate that the addition of a magnetic field desaturates the absorption trough of the P-Cygni profiles, but further efforts are needed to fully account for the observed line profile variation. Our study thus provides a first step toward a broader understanding of how strong magnetic fields affect mass loss diagnostics from UV lines.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bard, C. & Townsend, R. H. D., 2016, MNRAS, 462.4, 3672 CrossRefGoogle Scholar
Fossati, L., Castro, N., Schöller, M., Hubrig, S., Langer, N., Morel, T., Briquet, M., Herrero, A., Przybilla, N., Sana, H., et al. 2015, A&A, 582, A45 Google Scholar
Grunhut, J. H., Wade, G. A., Marcolino, W. L. F., Petit, V., Henrichs, H. F., Cohen, D. H., Alecian, E., Bohlender, D., Bouret, J. C., Kochukhov, O., et al. 2009, MNRAS, 400.1, L94 CrossRefGoogle Scholar
Marcolino, W. L. F., Bouret, J. C., Walborn, N. R., Howarth, I. D., Nazé, Y., Fullerton, A. W., Wade, G. A., Hillier, D. J., & Herrero, A., 2015, MNRAS, 422.3, 2314 CrossRefGoogle Scholar
Marcolino, W. L. F., Bouret, J. C., Sundqvist, J. O., Walborn, N. R., Fullerton, A. W., Howarth, I. D., Wade, G. A., & ud-Doula, A., 2013, MNRAS, 431.3, 2253 CrossRefGoogle Scholar
Nazé, Y., Sundqvist, J. O., Fullerton, A. W., ud-Doula, A., Wade, G. A., Rauw, G., & Walborn, N. R., 2015, MNRAS, 452.3, 2641 CrossRefGoogle Scholar
Owocki, S. P., ud-Doula, A., Sundqvist, J. O., Petit, V., Cohen, D. H., & Townsend, R. H. D., 2016, MNRAS, 462.4, 3830 CrossRefGoogle Scholar
Owocki, S. P. & Rybicki, G. B., 1985, ApJ, 299, 265 CrossRefGoogle Scholar
Petit, V., Owocki, S. P., Wade, G. A., Cohen, D. H., Sundqvist, J. O., Gagné, M., Apellániz, J. M., Oksala, M. E., Bohlender, D. A., Rivinius, T., et al. 2013, MNRAS, 429.1, 398 CrossRefGoogle Scholar
Sundqvist, J. O., ud-Doula, A., Owocki, S. P., Townsend, R. H. D., Howarth, I. D., & Wade, G. A., 2012, MNRAS, 423.1, L21 CrossRefGoogle Scholar
Townsend, R. H. D. & Owocki, S. P., 2005, MNRAS, 357.1, 251 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2008, MNRAS, 385.1, 97 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2009, MNRAS, 392.3, 1022 CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P., 2002, ApJ, 576.1, 413 CrossRefGoogle Scholar
Wade, G. A., Grunhut, J., Gräfener, G., Howarth, I. D., Martins, F., Petit, V., Vink, J. S., Bagnulo, S., Folsom, C. P., Nazé, Y., et al. 2011, MNRAS, 419.3, 2459 CrossRefGoogle Scholar
Wade, G. A., Howarth, I. D., Townsend, R. H. D., Grunhut, J. H., Shultz, M., Bouret, J. C., Fullerton, A., Marcolino, W., Martins, F., Nazé, Y., et al. 2011, MNRAS, 416.4, 3160 CrossRefGoogle Scholar
Wade, G. A., Apellániz, J. M., Martins, F., Petit, V., Grunhut, J., Walborn, N. R., Barbá, R. H., Gagné, M., García-Melendo, E., Jose, J., et al. 2012, MNRAS, 425.2, 1278 CrossRefGoogle Scholar
Wade, G. A., Neiner, C., Alecian, E., Grunhut, J. H., Petit, V., de Batz, B., Bohlender, D. A., Cohen, D. H., Henrichs, H. F., Kochukhov, O., et al. 2016, MNRAS, 456.1, 2 Google Scholar