Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-19T01:41:48.418Z Has data issue: false hasContentIssue false

Multiwavelength study of potential blazar candidates among Fermi-LAT unidentified gamma-ray sources

Published online by Cambridge University Press:  29 January 2021

Jean Damascène Mbarubucyeye
Affiliation:
Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738Zeuthen, Germany, email: mbjdamas@gmail.com
Felicia Krauß
Affiliation:
Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA16801, USA email: Felicia.Krauss@psu.edu
Pheneas Nkundabakura
Affiliation:
University of Rwanda, College of Education, P.O. Box 5039, Kigali, Rwanda email: nkundapheneas@yahoo.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Studying unidentified γ-ray sources is important as they may hide new discoveries. We conducted a multiwavelength analysis of 13 unidentified Fermi-LAT sources in the 3FGL catalogue that have no known counterparts (Unidentified Gamma-ray Sources, UnIDs). The sample was selected for sources that have a single radio and X-ray candidate counterpart in their uncertainty ellipses. The purpose of this study is to find a possible blazar signature and to model the Spectral Energy Distribution (SED) of the selected sources using an empirical log parabolic model. The results show that the synchrotron emission of all sources peaks in the infrared (IR) band and that the high-energy emission peaks in MeV to GeV bands. The SEDs of sources in our sample are all blazar like. In addition, the peak position of the sample reveals that 6 sources (46.2%) are Low Synchrotron Peaked (LSP) blazars, 4 (30.8%) of them are High Synchrotron Peaked (HSP) blazars, while 3 of them (23.0%) are Intermediate Synchrotron Peaked (ISP) blazars.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abdo, A. A., Ackermann, M., Agudo, I., et al. 2010, ApJ, 716, 30 10.1088/0004-637X/716/1/30CrossRefGoogle Scholar
Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS, 218, 23 10.1088/0067-0049/218/2/23CrossRefGoogle Scholar
Ackermann, M., Ajello, M., Atwood, W. B., et al. 2015 ApJ, 810, 14 10.1088/0004-637X/810/1/14CrossRefGoogle Scholar
Atwood, W. B., et al. 2009, ApJ, 697, 1071 10.1088/0004-637X/697/2/1071CrossRefGoogle Scholar
Bruni, G., et al. 2018, ApJ, 854, L23 10.3847/2041-8213/aaacfbCrossRefGoogle Scholar
Houck, J. C., Denicola, L. A. 2000, in Manset N., Veillet C., Crabtree D., 653 eds, Astronomical Society of the Pacific Conference Series Vol. 216, 654 Astronomical Data Analysis Software and Systems, IX. p. 591 Google Scholar
Lefaucheur, J., and Pita, S. 2017, A&A, 602, A86 Google Scholar
Massaro, E., Perri, M., Giommi, P. and Nesci, R. 2004, A&A, 413, 489 Google Scholar
Massaro, F., Marchesini, E. J., D’Abrusco, R., et al. 2017, ApJ, 834, 113 10.3847/1538-4357/834/2/113CrossRefGoogle Scholar
Padovani, P., Giommi, P., Landt, H., et al. 2007, ApJ, 662, 182 10.1086/516815CrossRefGoogle Scholar
Saz Parkinson, P. M., Xu, H., Yu, P. L. H., et al. 2016, ApJ, 820, 8 10.3847/0004-637X/820/1/8CrossRefGoogle Scholar
Salvetti, D., Chiaro, G., La Mura, G., Thompson, D. J. 2017, MNRAS, 470, 1291 10.1093/mnras/stx1328CrossRefGoogle Scholar
The Fermi-LAT collaboration 2019, arXiv e-prints, p. arXiv:1902.10045 Google Scholar
Tramacere, A., Giommi, P., Perri, M., et al. 2009, A&A, 706 501, 879 Google Scholar
Yang, J.-H., and Fan, J.-H. 2005, Chinese J. Astron. Astrophys., 5, 229 10.1088/1009-9271/5/3/002CrossRefGoogle Scholar