Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-06T15:47:06.901Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Modeling protoplanetary disk evolution in young star forming regions

Published online by Cambridge University Press:  20 January 2023

Martijn J. C. Wilhelm
Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA, Leiden, the Netherlands email:
Simon Portegies Zwart
Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA, Leiden, the Netherlands email:
Claude Cournoyer-Cloutier
Department of Physics and Astronomy, McMaster University, Hamilton, Canada
Sean Lewis
Department of Physics, Drexel University, Philadelphia, USA
Brooke Polak
Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universität Heidelberg, Heidelberg, Germany
Aaron Tran
Department of Astronomy, Columbia University, New York, USA
Mordecai-Mark Mac Low
Department of Astronomy, Columbia University, New York, USA Department of Astrophysics, American Museum of Natural History, New York, USA
Stephen L. W. McMillan
Department of Physics, Drexel University, Philadelphia, USA
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form in clusters, while planets form in gaseous disks around young stars. Cluster dissolution occurs on longer time scales than disk dispersal. Planet formation thus typically takes place while the host star is still inside the cluster. We explore how the presence of other stars affects the evolution of circumstellar disks. Our numerical approach requires multi-scale and multi-physics simulations where the relevant components and their interactions are resolved. The simulations start with the collapse of a turbulent cloud, from which stars with disks form, which are able to influence each other. We focus on the effect of extinction due to residual cloud gas on the early evolution of circumstellar disks. We find that this extinction protects circumstellar disks against external photoevaporation, but these disks then become vulnerable to dynamic truncation by passing stars. We conclude that circumstellar disk evolution is heavily affected by the early evolution of the cluster.

Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union


Baczynski, C., Glover, S. C. O. & Klessen, R. S. 2015, MNRAS, 454, 1 CrossRefGoogle Scholar
Concha-Ramírez, F., Vaher, E. & Zwart, Portegies 2019a, MNRAS, 482, 1 CrossRefGoogle Scholar
Concha-Ramírez, F., Wilhelm, M. J. C., Portegies Zwart, S. & Haworth, T. 2019b, MNRAS, 490, 4 CrossRefGoogle Scholar
Concha-Ramírez, F., Wilhelm, M. J. C., Portegies Zwart, S., van Terwisga, S. E. & Hacar, A. 2021a, MNRAS, 501, 2 Google Scholar
Concha-Ramírez, F., Portegies Zwart, S. & Wilhelm, M. J. C. 2021b, ArXiV 2101.07826Google Scholar
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W. & Tufo, H. 2000, ApJS 131, 1 Google Scholar
Fujii, M., Iwasawa, M., Funato, Y. & Makino, J. 2007, PASJ 59, 6 Google Scholar
Habing, H.-J. 1968, Bulletin of the Astronomical Institutes of the Netherlands 19Google Scholar
Haworth, T. J., Clarke, C. J., Rahman, W., Winter, A. J. & Facchini, S. 2018, MNRAS 481, 1 CrossRefGoogle Scholar
Johnstone, D., Hollenbach, D. & Bally, J. 1998, ApJ 499, 2 Google Scholar
Kroupa, P. 2001, MNRAS 322, 2 CrossRefGoogle Scholar
Krumholz, M. R. & Forbes, J. C. 2015, Astronomy and Computing, 11CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. 2019, ARAA 57CrossRefGoogle Scholar
McMillan, S., Portegies Zwart, S., van Elteren, A. & Whitehead, A. 2012, ASP-CS 453 Google Scholar
Michel, A., van der Marel, N. & Matthews, B. C. 2021, ApJ 921, 1 CrossRefGoogle Scholar
Nicholson, R. B., Parker, R. J., Church, R. P., Davies, M. B., Fearon, N. M. & Walton, S. R. J. 2019, MNRAS 485, 4 Google Scholar
O’Dell, C. R., Wen, Z. & Hu, X. 1993, ApJ 410 Google Scholar
Parker, R. J., Nicholson, R. B. & Alcock, H. L. 2021a, MNRAS 502, 2 Google Scholar
Parker, R. J., Alcock, H. L., Nicholson, R. B., Panić, O. & Goodwin, S. P. 2021b, ApJ 913, 2 Google Scholar
Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S. L. W., Drost, N. & Portegies Zwart, S. F. 2013, A&A 557 Google Scholar
Portegies Zwart, S. F., Verbunt, F. 1996, A&A 309 Google Scholar
Portegies Zwart, S. et al. 2009, New Astron. 14, 4 CrossRefGoogle Scholar
Portegies Zwart, S., McMillan, S. L. W., van Elteren, A., Pelupessy, I. & de Vries, N. 2013, Computer Physics Communications, 184, 3 CrossRefGoogle Scholar
Portegies Zwart, S. F. 2016, MNRAS 457, 1 Google Scholar
Portegies Zwart, S., Pelupessy, I., Martínez-Barbosa, C., van Elteren, A. & McMillan, S. 2020, Communications in Nonlinear Science and Numerical Simulations 85CrossRefGoogle Scholar
Ribas, A., Merin, B., Bouy, H. & Maud, L. T. 2014, A&A 561 Google Scholar
Rosotti, G. P., Dale, J. E., de Juan Ovelar, M., Hubber, D. A., Kruijssen, J. M. D., Ercolano, B. & Walch, S. 2014, MNRAS 441, 3 CrossRefGoogle Scholar
Toonen, S., Nelemans, G., Portegies Zwart, S. 2012, A&A 546 Google Scholar
Tychoniec, L, Manara, C. F., Rosotti, G. P., van Dishoeck, E. F., Cridland, A. J., Hsieh, T.-H., Murillo, N. M., Segura-Cox, D., van Terwisga, S. E. & Tobin, J. J. 2020, A&A 640 Google Scholar
Vincke, K. & Pfalzner, S. 2016, ApJ 828, 1 CrossRefGoogle Scholar
Wall, J. E., McMillan, S. L. W., Mac Low, M.-M., Klessen, R. S. & Portegies Zwart, S. 2019, ApJ 887, 1 CrossRefGoogle Scholar
Wall, J. E., Mac Low, M.-M., McMillan, S. L. W., Klessen, R. S., Portegies Zwart, S., Pellegrino, A. 2020, ApJ 904, 2 CrossRefGoogle Scholar
Wilhelm, M. J. C. & Portegies Zwart, S. 2022, MNRAS 509, 1 Google Scholar
Winter, A. J., Clarke, C. J., Rosotti, G. P., Hacar, A. & Alexander, R. 2019, MNRAS 490, 4 CrossRefGoogle Scholar