Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T00:47:06.278Z Has data issue: false hasContentIssue false

Magnetic field evolution in solar-type stars

Published online by Cambridge University Press:  24 September 2020

Axel Brandenburg*
Affiliation:
Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden JILA and Laboratory for Atmospheric and Space Physics, Univ. Colorado, Boulder, USA McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA Faculty of Natural Sciences and Medicine, Ilia State University, 0194 Tbilisi, Georgia email: brandenb@nordita.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss selected aspects regarding the magnetic field evolution of solar-type stars. Most of the stars with activity cycles are in the range where the normalized chromospheric Calcium emission increases linearly with the inverse Rossby number. For Rossby numbers below about a quarter of the solar value, the activity saturates and no cycles have been found. For Rossby numbers above the solar value, again no activity cycles have been found, but now the activity goes up again for a major fraction of the stars. Rapidly rotating stars show nonaxisymmetric large-scale magnetic fields, but there is disagreement between models and observations regarding the actual value of the Rossby number where this happens. We also discuss the prospects of detecting the sign of magnetic helicity using various linear polarization techniques both at the stellar surface using the parity-odd contribution to linear polarization and above the surface using Faraday rotation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alvarado-Gómez, J. D., Hussain, G. A. J., Drake, J. J., Donati, J.-F., Sanz-Forcada, J., Stelzer, B., Cohen, O., Amazo-Gómez, E. M., Grunhut, J. H., Garraffo, C., Moschou, S. P., Silvester, J., Oksala, M. E. 2018, MNRAS 473, 4CrossRefGoogle Scholar
Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., et al. 1995, ApJ, 438, 269 CrossRefGoogle Scholar
Barnes, S. A., & Kim, Y.-C. 2010, ApJ, 721, 675 CrossRefGoogle Scholar
Benomar, O., Bazot, M., Nielsen, M. B., Gizon, L., Sekii, T., Takata, M., Hotta, H., Hanasoge, S., Sreenivasan, K. R., & Christensen-Dalsgaard, J. 2018, science, 361, 1231 CrossRefGoogle Scholar
Böhm-Vitense, E. 2007, ApJ, 657, 486 CrossRefGoogle Scholar
Boro Saikia, S., Jeffers, S. V., Morin, J., Petit, P., Folsom, C. P., Marsden, S. C., Donati, J.-F., Cameron, R., Hall, J. C., Perdelwitz, V., Reiners, A., & Vidotto, A. A. 2016, A&A, 594, A29 Google Scholar
Bracco, A., Candelaresi, S., Del Sordo, F., & Brandenburg, A. 2019, A&A, 621, A97 Google Scholar
Brandenburg, A. 2019, ApJ, 883, 119 CrossRefGoogle Scholar
Brandenburg, A., & Giampapa, M. S. 2018, A&A, 855, L22 Google Scholar
Brandenburg, A., & Stepanov, R. 2014, ApJ, 786, 91 CrossRefGoogle Scholar
Brandenburg, A., Ashurova, M. B., & Jabbari, S. 2017, A&A, 845, L15 Google Scholar
Brandenburg, A., Bracco, A., Kahniashvili, T., Mandal, S., Roper Pol, A., Petrie, G. J. D., & Singh, N. K. 2019, ApJ, 870, 87 CrossRefGoogle Scholar
Brandenburg, A., Mathur, S., & Metcalfe, T. S. 2017, ApJ, 845, 79 CrossRefGoogle Scholar
Brandenburg, A., Saar, S. H., & Turpin, C. R. 1998, A&A, 498, L51 Google Scholar
Brandenburg, A., Subramanian, K., Balogh, A., & Goldstein, M. L. 2011, ApJ, 734, 9 CrossRefGoogle Scholar
Brentjens, M. A., & de Bruyn, A. G. 2005, A&A, 441, 1217 Google Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J. 2011, ApJ, 731, 69 CrossRefGoogle Scholar
Burn, B. J. 1966, MNRAS, 133, 67 CrossRefGoogle Scholar
Durrer, R. 2008, The Cosmic Microwave Background, Chapter 5 Cambridge University Press, Cambridge, United Kingdom, 2008CrossRefGoogle Scholar
Eddy, J. A. 1976, science, 286, 1198 Google Scholar
Egeland, R. 2018, ApJ, 866, 80 CrossRefGoogle Scholar
Elstner, D., & Korhonen, H. 2005, Astron. Nachr., 326, 278 CrossRefGoogle Scholar
Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J. 2014, MNRAS, 438, L76 CrossRefGoogle Scholar
Giampapa, M. S., Brandenburg, A., Cody, A. M., Skiff, B. A., & Hall, J. C. 2017, ApJ, submitted http://www.nordita.org/preprints, no. 2017-121Google Scholar
Gilman, P. A. 1977, Geophys. Astrophys. Fluid Dyn., 8, 93 CrossRefGoogle Scholar
Gilman, P. A. 1980, in Stellar turbulence; Proceedings of the Fifty-first Colloquium, London, Ontario, Canada, August 27-30, 1979 Gray, D. F. & Linsky, J. L. (Berlin and New York, Springer-Verlag), 19Google Scholar
Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., & Sudarshan, E. C. G. 1967, JMP, 8, 2155 Google Scholar
Guerrero, G., Zaire, B., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G., Mansour, N. N. 2019a, ApJ, 880, 6 CrossRefGoogle Scholar
Guerrero, G., Del Sordo, F., Bonanno, A., & Smolarkiewicz, P. K. 2019b, MNRAS, 490, 4281 CrossRefGoogle Scholar
Jetsu, L., Tuominen, I., Grankin, K. I., Mel’nikov, S. Yu., & Shevenko, V. S. 1994, A&A, 282, L9 Google Scholar
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, Phys. Rev. Lett., 78, 2058 CrossRefGoogle Scholar
Kamionkowski, M., & Kovetz, E. D. 2016, ARA&A, 54, 227 CrossRefGoogle Scholar
Käpylä, M. J., Käpylä, P. J., Olspert, N., Brandenburg, A., Warnecke, J., Karak, B. B., & Pelt, J. 2016, A&A, 589, A56 Google Scholar
Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2014, A&A, 570, A43 Google Scholar
Karak, B. B., Käpylä, M. J., Käpylä, P. J., Brandenburg, A., Olspert, N., & Pelt, J. 2015, A&A, 576, A26 Google Scholar
Karak, B. B., Tomar, A., & Vashishth, V. 2019, MNRAS, 491, 3155 CrossRefGoogle Scholar
Katsova, M. M., Kitchatinov, L. L., Livshits, M. A., Moss, D. L., Sokoloff, D. D., & Usoskin, I. G. 2018, Astron. Rep., 95, 78 Google Scholar
Kleeorin, N. I., Ruzmaikin, A. A., & Sokoloff, D. D. 1983, Ap&SS, 95, 131i Google Scholar
Kochukhov, O., Petit, P., Strassmeier, K. G., Carroll, T. A., Fares, R., Folsom, C. P., Jeffers, S. V., Korhonen, H., Monnier, J. D., Morin, J., Rosén, L., Roettenbacher, R. M., & Shulyak, D. 2017, Astron. Nachr., 338, 428 CrossRefGoogle Scholar
Kövári, Z., Kriskovics, L., Künstler, A., Carroll, T. A., Strassmeier, K. G., Vida, K., Oláh, K., Bartus, J., Weber, M. 2015, A&A, 573, A98 Google Scholar
Kövári, Z., Strassmeier, K. G., Carroll, T. A., Oláh, K., Kriskovics, L., Kövári, E., Kovács, O., Vida, K., Granzer, T., & Weber, M. 2017, A&A, 606, A42 Google Scholar
Lehtinen, J., Jetsu, L., Hackman, T., Kajatkari, P., & Henry, G. W. 2016, A&A, 588, A38 Google Scholar
Lehtinen, J. J., Spada, F., Käpylä, M. J., Olspert, N., & Käpylä, P. J. 2020, Nat. Astron., 4, 658 CrossRefGoogle Scholar
Mamajek, E. E., & Hillenbrand, L. A. 2008, ApJ, 687, 1264 CrossRefGoogle Scholar
Maunder, E. W. 1904, MNRAS, 64, 747 CrossRefGoogle Scholar
Metcalfe, T. S., & van Saders, J. 2017, Solar Phys., 292, 126 CrossRefGoogle Scholar
Metcalfe, T. S., Kochukhov, O., Ilyin, I. V., Strassmeier, K. G., Godoy-Rivera, D., & Pinsonneault, M. H. 2019, ApJ, 887, L38 CrossRefGoogle Scholar
Moss, D., & Brandenburg, A. 1995, Geophys. Astrophys. Fluid Dyn., 80, 229 CrossRefGoogle Scholar
Moss, D., Barker, D. M., Brandenburg, A., & Tuominen, I. 1995, A&A, 294, 155 Google Scholar
Noyes, R. W., Hartmann, L., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984a, ApJ, 279, 763 CrossRefGoogle Scholar
Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984b, ApJ, 287, 769 CrossRefGoogle Scholar
Olspert, N., Lehtinen, J. J., Käpylä, M. J., Pelt, J., & Grigorievskiy, A. 2018, A&A, 619, A6 Google Scholar
Prabhu, A., Brandenburg, A., Käpylä, M. J., & Lagg, A. 2020, A&A, doi: http://dx.doi.org/10.1051/0004-6361/202037614, https://arxiv.org/abs/2001.10884 CrossRefGoogle Scholar
Rädler, K.-H., Wiedemann, E., Brandenburg, A., Meinel, R., & Tuominen, I. 1990, A&A, 239, 413 Google Scholar
Rädler, K.-H., Rheinhardt, M., Apstein, E., & Fuchs, H. 2002, Nonl. Processes Geophys., 38, 171 CrossRefGoogle Scholar
Rädler, K.-H., & Brandenburg, A. 2003, Phys. Rev. E, 67, 026401 CrossRefGoogle Scholar
Reinhold, T., & Arlt, R. 2015, A&A, 576, A15 Google Scholar
Roberts, G. O. 1972, Phil. Trans. Roy. Soc. London A, 271, 411 Google Scholar
Rüdiger, G. 1978, Astron. Nachr., 299, 217 CrossRefGoogle Scholar
Saar, S. H., & Linsky, J. L. 1985, ApJ, 299, L47 CrossRefGoogle Scholar
Schrijver, C. J., Cote, J, Zwaan, C., Saar, S. H. 1989, ApJ, 337, 964 CrossRefGoogle Scholar
Schwabe, H. 1844, Astron. Nachr., 21, 233 CrossRefGoogle Scholar
Seljak, U., & Zaldarriaga, M. 1997, Phys. Rev. Lett., 78, 2054 CrossRefGoogle Scholar
Tobias, S. 1998, MNRAS, 296, 653 CrossRefGoogle Scholar
van Saders, J. L., Ceillier, T., Metcalfe, T. S., Silva Aguirre, V., Pinsonneault, M. H., García, R. A., Mathur, S., & Davies, G. R. 2016, Nature, 529, 181 CrossRefGoogle Scholar
Vilhu, O. 1984, A&A, 133, 117 Google Scholar
Viviani, M., Warnecke, J., Käpylä, M. J., Käpylä, P. J., Olspert, N., Cole-Kodikara, E. M., Lehtinen, J. J., & Brandenburg, A. 2018, A&A, 616, A160 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534, A11 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2012, J. Spa. Weather Spa. Clim., 2, A11 CrossRefGoogle Scholar
Wilson, O. C. 1963, ApJ, 138, 832 CrossRefGoogle Scholar
Wilson, O. C. 1978, ApJ, 266, 379 CrossRefGoogle Scholar
Zaldarriaga, M. & Seljak, U. 1997, Phys. Rev. D, 55, 1830 CrossRefGoogle Scholar