Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T18:02:55.626Z Has data issue: false hasContentIssue false

Lithium in globular clusters

Published online by Cambridge University Press:  23 April 2010

Andreas J. Korn*
Affiliation:
Dept. of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden email: andreas.korn@fysast.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review recent progress in mapping out and understanding the behaviour of stellar surface abundances of lithium as evidenced by spectroscopic studies of nearby globular clusters (GCs). It will become clear that these observations necessitate revisions to the canonical picture of stellar and globular-cluster evolution: stars evolve with additional non-convective mixing processes and GCs are not simple stellar populations. In spite of these complications, GCs are excellent test beds for chemical-abundance studies. Spectroscopic observations of GC stars of different evolutionary stages reveal systematic trends of surface abundances likely caused by atomic diffusion and mixing. Correcting for their combined effect on surface lithium, a stellar solution to the cosmological lithium discrepancy is likely, if not probable. However, a definitive answer can only be given once we know the effective temperatures of warm subdwarfs and subgiants to high accuracy and understand the processes which give rise to the mixing needed to moderate atomic diffusion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Angulo, C., Casarejos, E., Couder, M., Demaret, P., Leleux, P., Vanderbist, F., Coc, A., Kiener, J., Tatischeff, V., Davinson, T., Murphy, A. S., Achouri, N. L., Orr, N. A., Cortina-Gil, D., Figuera, P., Fulton, B. R., Mukha, I., & Vangioni, E. 2005, ApJ, 630, 105CrossRefGoogle Scholar
Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V. 2006, ApJ, 644, 229CrossRefGoogle Scholar
Boesgaard, A. M., Deliyannis, C. P., Stephens, A., & King, J. R. 1998, ApJ, 493, 206CrossRefGoogle Scholar
Bonifacio, P. 2002, A&A, 395, 515Google Scholar
Bonifacio, P., Pasquini, L., Spite, F., Bragaglia, A., Carretta, E., Castellani, V., Centurin, M., Chieffi, A., Claudi, R., Clementini, G., D'Antona, F., Desidera, S., Franois, P., Gratton, R. G., Grundahl, F., James, G., Lucatello, S., Sneden, C., & Straniero, O. 2002, A&A, 390, 91Google Scholar
Cayrel, R., Steffen, M., Chand, H., Bonifacio, P., Spite, M., Spite, F., Petitjean, P., Ludwig, H.-G., & Caffau, E. 2007, A&A, 473, L37Google Scholar
Charbonnel, C. & Zahn, J.-P. 2007, A&A, 467, 15Google Scholar
Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A., & Angulo, C. 2004, ApJ, 600, 544CrossRefGoogle Scholar
Deliyannis, C. P., Boesgaard, A. M., & King, J. R. 1995, ApJ, 452, L13CrossRefGoogle Scholar
Dunkley, J., Komatsu, E., Nolta, M. R., Spergel, D. N., Larson, D., Hinshaw, G., Page, L., Bennett, C. L., Gold, B., Jarosik, N., Weiland, J. L., Halpern, M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., & Wright, E. L. 2009, ApJS, 180, 306CrossRefGoogle Scholar
González Hernández, J. I., Bonifacio, P., Caffau, E., Steffen, M., Ludwig, H.-G., Behara, N. T., Sbordone, L., Cayrel, R., & Zaggia, S. 2009, A&A, 505, L13Google Scholar
Jedamzik, K., Choi, K.-Y., Roszkowski, L., & Ruiz de Austri, R. 2006, JCAP, 07, 007CrossRefGoogle Scholar
Korn, A. J., Grundahl, F., Richard, O., Barklem, P. S., Mashonkina, L., Collet, R., Piskunov, N., & Gustafsson, B. 2006, Nature, 442, 657CrossRefGoogle Scholar
Korn, A. J., Grundahl, F., Richard, O., Mashonkina, L., Barklem, P. S., Collet, R., Gustafsson, B., & Piskunov, N. 2007, ApJ, 671, 402CrossRefGoogle Scholar
Lee, J.-W., Kang, Y.-W., Lee, J., & Lee, Y.-W. 2009, Nature, 462, 480CrossRefGoogle Scholar
Lind, K., Korn, A. J., Barklem, P. S., & Grundahl, F. 2008, A&A, 490, 777Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Michaud, G., Fontaine, G., & Beaudet, G. 1984, ApJ, 282, 206CrossRefGoogle Scholar
Pasquini, L. & Molaro, P. 1996, A&A, 307, 761Google Scholar
Pasquini, L., Bonifacio, P., Molaro, P., Francois, P., Spite, F., Gratton, R. G., Carretta, E., & Wolff, B. 2005, A&A, 441, 549Google Scholar
Piau, L., Beers, T. C., Balsara, D. S., Sivarani, T., Truran, J. W., & Ferguson, J. W. 2006, ApJ, 653, 300CrossRefGoogle Scholar
Piotto, G., Bedin, L. R., Anderson, J., King, I. R., Cassisi, S., Milone, A. P., Villanova, S., Pietrinferni, A., & Renzini, A. 2007, ApJ, 661, L53CrossRefGoogle Scholar
Richard, O., Michaud, G., & Richer, J. 2001, ApJ, 558, 377CrossRefGoogle Scholar
Spite, M. & Spite, F. 1982, Nature, 297, 483CrossRefGoogle Scholar