Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T16:44:07.735Z Has data issue: false hasContentIssue false

Kuiper Belt object 2014MU69, Pluto and Phoebe as windows on the composition of the early solar nebula

Published online by Cambridge University Press:  12 October 2020

Y. J. Pendleton
Affiliation:
NASA Ames Research Center Moffett Field, CA 94035 email: yvonne.pendleton@nasa.gov
D. P. Cruikshank
Affiliation:
NASA Ames Research Center Moffett Field, CA 94035 email: yvonne.pendleton@nasa.gov
S. A. Stern
Affiliation:
Southwest Research Institute, Boulder, CO,
C. M. Dalle Ore
Affiliation:
NASA Ames Research Center Moffett Field, CA 94035 email: yvonne.pendleton@nasa.gov SETI Institute, Mountain View, CA,
W. Grundy
Affiliation:
Lowell Observatory, Flagstaff, AZ,
C. Materese
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD,
S. Protopapa
Affiliation:
Southwest Research Institute, Boulder, CO,
B. Schmitt
Affiliation:
IPAG, Univ. Grenoble, Alpes, France
C. Lisse
Affiliation:
Johns Hopkins Applied Physics Lab, Laurel, MD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The initial chemical composition of a proto-planetary nebula depends upon the degree to which 1) organic and ice components form on dust grains, 2) organic and molecular species form in the gas phase, 3) organics and ices are exchanged between the gas and solid state, and 4) the precursor and newly formed (more complex) materials survive and are modified in the developing planetary system. Infrared and radio observations of star-forming regions reveal that complex chemistry occurs on icy grains, often before stars even form. Additional processing, through the proto-planetary disk (PPD) further modifies most, but not all, of the initial materials. In fact, the modern Solar System still carries a fraction of its interstellar inheritance (Alexander et al.2017). Here we focus on three examples of small bodies in our Solar System, each containing chemical and dynamical clues to its origin and evolution: the small-cold classical Kuiper Belt object (KBO) 2014 MU69, Pluto, and Saturn’s moon, Phoebe. The New Horizons flyby of 2014 MU69 has given the first view of an unaltered body composed of material originally in the solar nebula at ~45 AU. The spectrum of MU69 reveals methanol ice (not commonly found), a possible detection of water ice, and the noteworthy absence of methane ice (Stern et al. 2019). Pluto’s internal and surface inventory of volatiles and complex organics, together with active geological processes including cryo-volcanism, indicate a surprising level of activity on a body in the outermost region of the Solar System, and the fluid that emerges from subsurface reservoirs may contain material inherited from the solar nebula (Cruikshank et al.2019a,b). Meanwhile, Saturn’s captured moon, Phoebe, carries high D/H in H2O (Clark et al. 2019) and complex organics (Cruikshank et al. 2008), both consistent with its formation in, and inheritance from, the outer region of the solar nebula. Together, these objects provide windows on the origin and evolution of our Solar System and constraints to be considered in future chemical and physical models of PPDs.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alexander, C. M. O’D., Nittler, L., Davidson, J., & Ciesla, F. 2017, Meteoritics, 52, 1797 CrossRefGoogle Scholar
Ansdell, M., Williams, J., van der Marel, N., et al. 2016, ApJ, 828, 46 CrossRefGoogle Scholar
Baratta, G., Chaput, D., Cottin, H., et al. 2015, Planet. Space Sci., 118, 211 CrossRefGoogle Scholar
Barucci, M. A., Merlin, F., Perna, D., et al. 2012, A&A, 539, 152 Google Scholar
Bergin, E. A., Cleeves, L., Crockett, N., et al. 2014, Faraday Discussions, 168, 61 CrossRefGoogle Scholar
Bosman, A.D., Walsh, C., & van Dishoeck, E. F. 2018, A&A, 618, 182 Google Scholar
Brogan, C.L., Perez, L. M., Hunter, T. R. & the ALMA Partnership 2015, ApJL, 808, L3 Google Scholar
Bruderer, S., van Dishoeck, E. F., Doty, S. D., & Herczeg, G. J. 2012, A&A, 541, 91 Google Scholar
Castillo-Rogez, J., Vernazza, P. ,& Walsh, K. 2019, MNRAS, 486, 538 CrossRefGoogle Scholar
Ciesla, F. & Sandford, S. 2012, Science, 336, 452 CrossRefGoogle Scholar
Clark, R. N., Brown, R. H., Jaumann, R., et al. 2005, Nature, 435, 66 CrossRefGoogle Scholar
Clark, R. N., Brown, R. H., Cruikshank, D., Swayze, G. A., et al. 2019, Icarus, 321, 791 CrossRefGoogle Scholar
Coradini, A., Toshi, F., Gavrishin, A., et al. 2008, Icarus, 193, 233 CrossRefGoogle Scholar
Cruikshank, D. P., Bartholomew, M., Geballe, T., Pendleton, Y. J., et al. 1998, Icarus, 135, 389 CrossRefGoogle Scholar
Cruikshank, D. P., Wegryn, E., Dalle Ore, C., Pendleton, Y. J., et al. 2008, Icarus, 193, 334 CrossRefGoogle Scholar
Cruikshank, D. P., Umurhan, O. Beyer, R. et al. 2019a, Icarus, 330, 155 CrossRefGoogle Scholar
Cruikshank, D. P., Matarese, C., Pendleton, Y. J., et al. 2019b, Astrobiology, 19, 7 CrossRefGoogle Scholar
Dalle Ore, C. M., Cruikshank, D. P., & Clark, R. N. 2012, Icarus, 221, 735 CrossRefGoogle Scholar
Dalle Ore, C. M., Cruikshank, D. P., Protopapa, S., et al. 2019, Science Advances, 5:eaav5731CrossRefGoogle Scholar
Du, F., Bergin, E. A., & Hogerheijde, M. R. 2015, ApJL, 807, L32 CrossRefGoogle Scholar
Eistrup, C., Walsh, C., & van Dishoeck, E. F. 2016, A&A 595, 83 Google Scholar
Eistrup, C., Walsh, C., van Dishoeck, E. F., (2018) A&A, 613, A14 Google Scholar
Favre, C., Cleeves, L. I., Bergin, E. A., et al. 2013, ApJL, 776, L38 CrossRefGoogle Scholar
Grundy, W., Bertrand, T., Binzel, R., et al. 2018, Icarus, 314, 232 CrossRefGoogle Scholar
Grundy, W., Bird, M. K., Britt, D. T., et al. 2019, Science, 367, 999 Google Scholar
Johnson, T. V.& Lunine, J. I. 2005, Nature, 435, 69 CrossRefGoogle Scholar
Kama, M., Bruderer, S., van Dishoeck, J. I., et al. 2016, A&A, 592, 83 Google Scholar
Krijt, S., Schwarz, K., Bergin, E. A. et al. 2018, ApJ, 864, 78 CrossRefGoogle Scholar
Lisse, C. M., Cruikshank, D. P., Pendleton, Y. J., et al. 2020, Icarus, in press Google Scholar
McClure, M. K., Bergin, E. A., Cleeves, L. I. et al. 2016, ApJ, 831, 167 CrossRefGoogle Scholar
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al. 2014, ApJ, 788, 111 CrossRefGoogle Scholar
Materese, C. K., Cruikshank, D. P., Sandford, S. A., et al. 2015, ApJ, 812, 150 CrossRefGoogle Scholar
Nesvorny, D. 2015, AJ, 150, 73 CrossRefGoogle Scholar
Schwarz, K. R., Bergin, E. A., Cleeves, L. I. et al. 2016, ApJ, 823, 91 CrossRefGoogle Scholar
Schwarz, K. R., Bergin, E. A., Cleeves, L. I. et al. 2018, ApJ, 856, 85 CrossRefGoogle Scholar
Stern, S. A., Bagenal, F., Ennico, K. et al. 2015, Science, 350, 292 Google Scholar
Zhang, K., Bergin, E. A., Blake, G. A. et al. 2017, Nature Astron., 1, 130 CrossRefGoogle Scholar
Zhang, K., Krijt, S., et al. 2019, ApJ, 883, 98 CrossRefGoogle Scholar