Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rlmms Total loading time: 0.171 Render date: 2021-10-24T13:47:10.738Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Kinematical analysis of Bipolar Planetary Nebulae

Published online by Cambridge University Press:  15 December 2006

Martina Dobrinĉić
Affiliation:
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Canary Islands, Spain
Eva Villaver
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA; Affiliated to the Hubble Space Telescope Department of ESA
Martín A. Guerrero
Affiliation:
Instituto de Astrofísica de Andalucí a, Granada, Spain
Arturo Manchado
Affiliation:
Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Canary Islands, Spain
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bipolar planetary nebulae (BPNe) offer a unique opportunity to test models that aim to reproduce the PNe morphologies. In particular, kinematic studies of BPNe allow a reconstruction of the 3D structure of the nebula, otherwise hidden in imaging studies. With this aim in mind we have obtained long-slit echelle spectra of a sample of PNe which cover the full range of observed bipolar morphologies, from elliptical to highly collimated. The analysis of our kinematical data reveals equatorial expansion velocities in the low to medium range (3 to 16 km s$^{-1}$), while the polar expansion velocities range from 18 to 100 km s$^{-1}$. We find that the kinematics of the PN K 3-46 can only be explained by a decrease in the expansion velocity with time. The kinematical ages, calculated by using distances estimated from Galactic rotation curves, when available, or by using statistical values, show that the BPNe in our sample – even those which show non-extreme collimation – appear to be young. We have compared our results with the latest theoretical models of BPN formation, and find good agreement between the observed expansion velocities and the numerical models that use magnetic fields coupled with stellar rotation as the collimation mechanism.

Type
Contributed Papers
Copyright
© 2006 International Astronomical Union
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Kinematical analysis of Bipolar Planetary Nebulae
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Kinematical analysis of Bipolar Planetary Nebulae
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Kinematical analysis of Bipolar Planetary Nebulae
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *