Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T23:57:30.088Z Has data issue: false hasContentIssue false

The Inner Coronagraph on Board ADITYA-L1 and Automatic Detection of CMEs

Published online by Cambridge University Press:  24 July 2018

Banerjee D.
Affiliation:
Indian Institute of Astrophysics, Bangalore-560034, India Center of Excellence in Space Sciences, IISER Kolkata, India
Patel R.
Affiliation:
Indian Institute of Astrophysics, Bangalore-560034, India
Pant V.
Affiliation:
Indian Institute of Astrophysics, Bangalore-560034, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Visible Emission Line Coronagraph (VELC) on board ADITYA-L1 is an internally occulted coronagraph with mirror as its primary objective element. It has a field of view (FOV) starting from 1.05 R – 3 R. It will observe the corona in continuum centered at 5000 Å and will perform spectroscopic observations of inner corona in two visible (5303 Å and 7892 Å) and one infrared (10747 Å) wavelengths. VELC will be capable of observing the corona with high spatial and temporal resolutions. We present an overview of the inner coronagraph (VELC) design and introduce the concept of an on-board automated coronal mass ejections (CMEs) detection logic proposed for this payload.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bemporad, A., Andretta, V., et al. 2014, Proceedings of the SPIE, Vol. 9152Google Scholar
Brueckner, G., Howard, R., et al. 1995, Solar Physics, 162, 357Google Scholar
de Wijn, A. G., Burkepile, J. T., Tomczyk, S., Nelson, P. G., Huang, P. & Gallagher, D. 2012, Proceedings of SPIE, 8444, 84443NGoogle Scholar
Elmore, D. F., Burkepile, J. T., Darnell, J. A., Lecinski, A. R. & Stanger, A. L. 2003, Proceedings of SPIE, 4843, 6675CrossRefGoogle Scholar
Fisher, R. R., Lee, R. H., MacQueen, R. M. & Poland, A. I. 1981, Applied Optics, 20, 10941101CrossRefGoogle Scholar
Guhathakurta, M., Fisher, R. R., Holzer, T. E. & Sime, D. G. 1993, Amer. Astron. Soc, 25, 1213Google Scholar
Hansen, R. T., Garcia, C. J., Grognard, R. J.-M. & Sheridan, K. V. 1971, Proceedings of the Astronomical Society of Australia, 2, 57Google Scholar
Hess, P. & Colaninno, R. C. 2017, The Astrophysical Journal, 836, 9CrossRefGoogle Scholar
Howard, R. A., Moses, J. D., Vourlidas, A., et al. 2008, Space Science Reviews, 136, 67CrossRefGoogle Scholar
Koomen, M. J., Detwiler, C. R., Brueckner, G. E., Cooper, H. W. & Tousey, R. 1975, Applied Optics, 14, 743CrossRefGoogle Scholar
Lyot, B. 1930, C. R. Acad. Sci. Paris, 191, 834Google Scholar
MacQueen, R. M., Csoeke-Poeckh, A., Hildner, E., House, L., Reynolds, R., Stanger, A., Tepoel, H. & Wagner, W 1980, Solar Physics, 65, 91Google Scholar
MacQueen, R. M., Eddy, J. A., Gosling, J. T., et al. 1974, The Astrophysical Journal, 87, L85CrossRefGoogle Scholar
Michels, D. J., Howard, R. A., Koomen, M. J., Sheeley, N. R. Jr.: In Kundu, M. R. & Gergely, T. E. 1980, Radio Physics of the Sun, p.439, Reidel, D., Hingham MACrossRefGoogle Scholar
Prasad, B., Banerjee, D., Singh, J., et al. 2017, Current Science, 113 (4), 613Google Scholar
Singh, J., Bayanna, R. & Sankarasubramanian, K. 2013, Journal of Optics, 42, 96Google Scholar
Singh, J., Prasad, B., Venkatakrishnan, P., et al. 2011, Current Science, 100, 167Google Scholar
Thompson, William et al. 2003, SPIE Proceedings, 4853Google Scholar
Venkata, S. N., Prasad, B. R., Nalla, R. K. & Singh, J. 2017, Journal of Astronomical Telescopes, Instruments, Systems, 3, 14002CrossRefGoogle Scholar