Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.252 Render date: 2021-10-17T13:30:26.834Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Inclination Dependent Luminosity Function of Spiral Galaxies

Published online by Cambridge University Press:  01 August 2006

Zhengyi Shao*
Affiliation:
Shanghai Astronomical Observatory, Joint institute for galaxy & cosmology, CAS, Shanghai 200030, P.R. China email: zyshao@shao.ac.cn
Rights & Permissions[Opens in a new window]

Extract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the inclination dependent luminosity function (LF) of spiral galaxies of the Sloan Digital Sky Survey (SDSS). Up to 60000 sample galaxies are selected from the 2nd data release of SDSS by fracdeVr < 0.5. Magnitudes and other related photometric parameters are taken from NYU-VAGC(Blanton et al.2005). The apparent axis ratio (b/a)is used as an observational inclination indicator to define sub-samples. LFs of all 5 SDSS bands (u, g, r, i, z) are drawn for different sub-samples. Significant correlation is found between characteristic magnitudes (M*) of sub-samples and their inclinations, which can be fairly explained by dust extinction. A linear fit of the relation between M* and log(b/a) measures the M*(0) (for expected face-on spirals, with 0.2 ~ 0.3 mag brighter than that of LF of whole sample) and the intensity of dust extinction γ, for each band (Figure 1(a)). Additionally, since γ ∝ τ (optical depth), the wavelength dependent γ describes the extinction curve. Figure 1(b) shows a good linear fit that implies the extinction curve obeys the power law very well, with τλ = τV(λ/5500Å)−0.97±0.07. The power index n ~ 1 is shallower than that of the MW, LMC and SMC (n=1.1~1.5), but significantly steeper than the value of Charlot et al. (2000) (n=0.7), which under the assumption of a patchy distribution of dust in spiral galaxies. So our result implies that dust distributed in spirals, on average, are not as patchy as Charlot et al. assumed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Blanton, M.R., 2005, AJ, 129, 2562.CrossRefGoogle Scholar
Charlot, S., & Fall, S.M. 2000, ApJ, 539, 718.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Inclination Dependent Luminosity Function of Spiral Galaxies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Inclination Dependent Luminosity Function of Spiral Galaxies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Inclination Dependent Luminosity Function of Spiral Galaxies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *