Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T11:28:00.725Z Has data issue: false hasContentIssue false

Hydromagnetic Equilibria and their Evolution in Neutron Stars

Published online by Cambridge University Press:  07 August 2014

Andreas Reisenegger*
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile email: areisene@astro.puc.cl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The strongest known magnetic fields are found in neutron stars. I briefly discuss how they are inferred from observations, as well as the evidence for their time-evolution. I go on to show how these extremely strong fields are actually weak in terms of their effects on the stellar structure. This is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes, perhaps pointing to an evolutionary connection. I suggest that a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) could be established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, because, depending on temperature and magnetic field strength, beta decays will keep adjusting the composition to the chemical equilibrium state, or ambipolar diffusion will decouple the charged component from the neutrons. Therefore, the still open question regarding stable hydromagnetic equilibria in barotropic fluids will become relevant for the evolution, at least for magnetar fields, which are likely too strong to be stabilized by the solid crust.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Akgün, T., Reisenegger, A., Mastrano, A., & Marchant, P. 2013, MNRAS, 433, 2445CrossRefGoogle Scholar
Baade, W. & Zwicky, F. 1934, PNAS, 20, 259CrossRefGoogle Scholar
Baym, G., Pethick, C., & Pines, D. 1969a, Nature, 224, 673Google Scholar
Baym, G., Pethick, C., & Pines, D. 1969b, Nature, 224, 674Google Scholar
Braithwaite, J. 2009, MNRAS, 397, 763Google Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A, 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. 2004, Nature, 431, 819Google Scholar
Braithwaite, J. & Spruit, H. 2006, A&A, 450, 1097Google Scholar
Chandrasekhar, S. & Prendergast, K. H. 1956, PNAS, 42, 5Google Scholar
Cumming, A., Arras, P., & Zweibel, E. 2004, ApJ, 609, 999Google Scholar
Faucher-Giguère, C.-A. & Kaspi, V. M. 2006, ApJ, 643, 332Google Scholar
Flowers, E. & Ruderman, M. A. 1977, ApJ, 215, 302CrossRefGoogle Scholar
Glampedakis, K., Jones, D. I., & Samuelsson, L. 2011, MNRAS, 413, 2021Google Scholar
Goldreich, P. & Reisenegger, A. 1992, ApJ, 395, 250Google Scholar
Gourgouliatos, K. N., Cumming, A., Reisenegger, A., Armaza, C., Lyutikov, M., & Valdivia, J. A. 2013, MNRAS, 434, 2480Google Scholar
Hoyos, J., Reisenegger, A., & Valdivia, J. A. 2008, A&A, 487, 789Google Scholar
Hoyos, J. H., Reisenegger, A., & Valdivia, J. A. 2010, MNRAS, 408, 1730CrossRefGoogle Scholar
Israel, G. L., Belloni, T., Stella, L., et al. 2005, ApJ, 628, L53Google Scholar
Kaspi, V. M. 2010, PNAS, 107, 7147CrossRefGoogle Scholar
Kouveliotou, C., Dieters, S., Strohmayer, T., et al. 1998, Nature, 393, 235CrossRefGoogle Scholar
Lander, S. K. & Jones, D. I. 2012, MNRAS, 424, 482CrossRefGoogle Scholar
Levin, Y. & Lyutikov, M. 2012, MNRAS, 427, 1574Google Scholar
Marchant, P., Reisenegger, A., & Akgün, T. 2011, MNRAS, 415, 2426CrossRefGoogle Scholar
Markey, P. & Tayler, R. J. 1973, MNRAS, 163, 77Google Scholar
Mastrano, A., Melatos, A., Reisenegger, A., & Akgün, T. 2011, MNRAS, 417, 2288Google Scholar
Mestel, L. 1956, MNRAS, 116, 324Google Scholar
Oppenheimer, J. R. & Volkoff, G. M. 1939, Phys. Rev. 55, 374Google Scholar
Pethick, C. J. 1992, in Structure and Evolution of Neutron Stars, Proceedings of the SENS '90 Conference held in Kyoto, Japan, 1990, eds. Pines, D., Tamagaki, R., & Tsuruta, S., Redwood City, CA: Addison-Wesley, p. 115Google Scholar
Reisenegger, A. 2009, A&A, 499, 557Google Scholar
Reisenegger, A., Benguria, R., Prieto, J. P., Araya, P. A., & Lai, D. 2007, A&A, 472, 233Google Scholar
Reisenegger, A. & Goldreich, P. 1992, ApJ, 395, 240Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365Google Scholar
Thompson, C. & Duncan, R. C. 1996, ApJ, 473, 322CrossRefGoogle Scholar
Urpin, V. A. & Shalybkov, D. A. 1991, Sov. Phys. JETP, 73, 703Google Scholar
Vainshtein, S. I., Chitre, S. M., & Olinto, A. V. 2000, Phys. Rev. E, 61, 4422Google Scholar
Viganò, D., et al. 2013, MNRAS, 434, 123Google Scholar
Wright, G. A. E. 1973, MNRAS, 162, 339Google Scholar