Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-12T08:31:08.856Z Has data issue: false hasContentIssue false

Gamma-ray Bursts Progress and Problems

Published online by Cambridge University Press:  23 June 2017

N. R. Tanvir*
Affiliation:
University of Leicester, Department of Physics and Astronomy, University Road, Leicester, LE1 7RH, United Kingdom email: nrt3@le.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of gamma-ray bursts (GRBs) has come a long way in the past fifty years since their first detection. We now know that GRBs arise in distant galaxies and that there are at least two distinct sub-classes, the long-duration class being produced by some rare massive star core collapse and the short-duration class likely by compact binary mergers involved neutron stars. In both cases, the final remnant will be a stellar-mass black-hole or a massive neutron star. The bursts themselves are associated with ultra-relativistic jetted outflows created by these events, and their afterglows by the impact of these outflows on the surrounding circumburst material. Increasingly GRBs are also being used as probes of the universe, both for understanding galaxy evolution back to the era of reionization, and for the physics of gravitational wave sources. However, many aspects of GRBs remain poorly understood, some pointers to which are given here.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., et al., 2016a, PhRvL, 116, 061102 Google Scholar
Abbott, B. P., et al., 2016b, ApJ, 826, L13 CrossRefGoogle Scholar
Berger, E., Fong, W., & Chornock, R.,2013, ApJ, 774, L23 CrossRefGoogle Scholar
Bromberg, O., Nakar, E., & Piran, T. 2011, ApJ, 739, L55 CrossRefGoogle Scholar
Cano, Z. 2016, LPI Contributions, 1962, 4116 Google Scholar
Chapman, R., Tanvir, N. R., Priddey, R. S., & Levan, A. J. 2007, MNRAS, 382, L21 CrossRefGoogle Scholar
Costa, E., Frontera, F., Heise, J., et al. 1997, Nature, 387, 783 CrossRefGoogle Scholar
de Ugarte Postigo, A., Horvath, I., Veres, P., et al. 2011, A&A, 525, A109 Google Scholar
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126 CrossRefGoogle Scholar
Fong, W., Berger, E., Chornock, R., et al. 2013, ApJ, 769, 56 CrossRefGoogle Scholar
Fruchter, A. S., Levan, A. J., Strolger, L., et al. 2006, Nature, 441, 463 CrossRefGoogle Scholar
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Nature, 395, 670 CrossRefGoogle Scholar
Gehrels, N., Sarazin, C., O’Brien, P., et al., 2005, Nature, 437, 851 CrossRefGoogle Scholar
Greiner, J., Mazzali, P., Kann, D. A., et al. 2015, Nature, 523, 189 CrossRefGoogle Scholar
Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847 CrossRefGoogle Scholar
Hjorth, J., Sollerman, J., Gorosabel, J., et al. 2005, ApJ, 630, L117 CrossRefGoogle Scholar
Hjorth, J., Malesani, D., Jakobsson, P., et al. 2012, ApJ, 756, 187 CrossRefGoogle Scholar
Krühler, T., et al., 2015, A&A, 581, A125 Google Scholar
Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJ(Letters), 182, L85 CrossRefGoogle Scholar
Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJ(Letters), 413, L101 CrossRefGoogle Scholar
Kumar, P. & Zhang, B. 2015, PhR, 561, 1 Google Scholar
Levan, A. J., Tanvir, N. R., Starling, R. L. C., et al. 2014a, ApJ, 781, 13 CrossRefGoogle Scholar
Levan, A. J., Tanvir, N. R., Fruchter, A. S., et al. 2014b, ApJ, 792, 115 CrossRefGoogle Scholar
Liang, E., Zhang, B., Virgili, F., & Dai, Z. G. 2007, ApJ, 662, 1111 CrossRefGoogle Scholar
Mazets, E. P., Golenetskii, S. V., Ilinskii, V. N., et al. 1981, ApSS, 80, 3 Google Scholar
Meegan, C. A., Fishman, G. J., Wilson, R. B., et al. 1992, Nature, 355, 143 CrossRefGoogle Scholar
Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., et al. 1997, Nature, 387, 878 CrossRefGoogle Scholar
Nemiroff, R. J. 1994, ComAp, 17, 189 Google Scholar
Paczynski, B. 1986, ApJ(Letters), 308, L43 CrossRefGoogle Scholar
Perley, D. A., Krühler, T., Schulze, S., et al. 2016, ApJ, 817, 7 CrossRefGoogle Scholar
Salvaterra, R., Campana, S., Vergani, S. D., et al. 2012, ApJ, 749, 68 CrossRefGoogle Scholar
Tanvir, N. R., et al., 2010, ApJ, 725, 625 CrossRefGoogle Scholar
Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2013, Nature, 500, 547 CrossRefGoogle Scholar
Thöne, C. C., et al., 2013, MNRAS, 428, 3590 CrossRefGoogle Scholar
Tikhomirova, Y. Y. & Stern, B. E. 2005, AstL, 31, 291 Google Scholar
van Paradijs, J., Groot, P. J., Galama, T., et al. 1997, Nature, 386, 686 CrossRefGoogle Scholar
Xu, D., de Ugarte Postigo, A., Leloudas, G., et al. 2013, ApJ, 776, 98 CrossRefGoogle Scholar