Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-s5ssh Total loading time: 0.236 Render date: 2021-06-21T10:30:55.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Fragmentation of colliding planetesimals with water content

Published online by Cambridge University Press:  05 January 2015

Thomas I. Maindl
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: thomas.maindl@univie.ac.at, rudolf.dvorak@univie.ac.at
Rudolf Dvorak
Affiliation:
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, A-1180 Vienna, Austria email: thomas.maindl@univie.ac.at, rudolf.dvorak@univie.ac.at
Christoph Schäfer
Affiliation:
Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany email: ch.schaefer@uni-tuebingen.de
Roland Speith
Affiliation:
Physikalisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Täbingen, Germany email: speith@pit.physik.uni-tuebingen.de
Rights & Permissions[Opens in a new window]

Abstract

We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also provide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies' mutual escape velocity which—along with the distribution of the impact angles—cover the collision outcome regimes ‘partial accretion’, ‘erosion’, and ‘hit-and-run’ leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Benz, W. & Asphaug, E. 1994, Icarus, 107, 98CrossRefGoogle Scholar
Canup, R. M., Barr, A. C., & Crawford, D. A. 2013, Icarus, 222, 200CrossRefGoogle Scholar
Dvorak, R., Eggl, S., Süli, Á., et al. 2012, in American Institute of Physics Conference Series, Vol. 1468, American Institute of Physics Conference Series, ed. Robnik, M. & Romanovski, V. G., 137–147Google Scholar
Grady, D. E. & Kipp, M. E. 1980, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17, 147CrossRefGoogle Scholar
Leinhardt, Z. M. & Stewart, S. T. 2012, ApJ, 745, 79CrossRefGoogle Scholar
Maindl, T. I. & Dvorak, R. 2014, in IAU Symposium, Vol. 299, IAU Symposium, ed. Booth, M., Matthews, B. C., & Graham, J. R., 370–373Google Scholar
Maindl, T. I., Dvorak, R., Speith, R., & Schäfer, C. 2014, ArXiv e-print arXiv:1401.0045Google Scholar
Maindl, T. I., Schäfer, C., Speith, R., et al. 2013, Astronomische Nachrichten, 334, 996CrossRefGoogle Scholar
Melosh, H. J. & Ryan, E. V. 1997, Icarus, 129, 562CrossRefGoogle Scholar
Schäfer, C., Speith, R., & Kley, W. 2007, A&A, 470, 733Google Scholar
You have Access
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fragmentation of colliding planetesimals with water content
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fragmentation of colliding planetesimals with water content
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fragmentation of colliding planetesimals with water content
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *