Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dwt4q Total loading time: 0.234 Render date: 2021-06-13T12:36:05.890Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation

Published online by Cambridge University Press:  01 September 2007

Ralf S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
Paul C. Clark
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
Simon C. O. Glover
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
Rights & Permissions[Opens in a new window]

Abstract

We discuss results from numerical simulations of star cluster formation in the turbulent interstellar medium (ISM). The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. This holds for star formation in molecular clouds in the solar neighborhood as well as for the formation of the very first stars in the early universe. The thermodynamic state of the ISM is a result of the balance between heating and cooling processes, which in turn are determined by atomic and molecular physics and by chemical abundances. Features in the effective equation of state of the gas, such as a transition from a cooling to a heating regime, define a characteristic mass scale for fragmentation and so set the peak of the initial mass function of stars (IMF). As it is based on fundamental physical quantities and constants, this is an attractive approach to explain the apparent universality of the IMF in the solar neighborhood as well as the transition from purely primordial high-mass star formation to the more normal low-mass mode observed today.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531CrossRefGoogle Scholar
Bonnell, I. A., Clarke, C. J., Bate, M. R., & Pringle, J. E. 2001, MNRAS, 324, 573CrossRefGoogle Scholar
Bonnell, I. A., Vine, S. G. & Bate, M. R. 2004, MNRAS, 349, 735CrossRefGoogle Scholar
Bonnell, I. A. & Bate, M. R. 2006, MNRAS, 370, 488CrossRefGoogle Scholar
Bonnell, I. A., Larson, R. B., & Zinnecker, H. 2007, Protostars and Planets V, Reipurth, B., Jewitt, D., and Keil, K. (eds.), University of Arizona Press, Tucson, p. 149Google Scholar
Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. 2001, MNRAS, 328, 969CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2003, Nature, 425, 812CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2004, New Astron., 9, 353CrossRefGoogle Scholar
Chabrier, G. 2003, PASP, 115, 763CrossRefGoogle Scholar
Christlieb, N., Bessell, M. S., Beers, T. C., Gustafsson, B., Korn, A., Barklem, P. S., Karlsson, T., Mizuno-Wiedner, M., & Rossi, S. 2002, Nature, 419, 904CrossRefGoogle Scholar
Clark, P. C., & Bonnell, I. A. 2005, MNRAS, 361, 2CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2007, ApJ, in press; arXiv:0706.0613Google Scholar
Evans, N. J. 1999, ARA&A, 37, 311CrossRefGoogle Scholar
Evans, N. J., Rawlings, J. M. C., Shirley, Y. L., & Mundy, L. G. 2001, ApJ, 557, 193CrossRefGoogle Scholar
Frebel, A., Johnson, J. L., & Bromm, V. 2007, astro-ph/0701395Google Scholar
Glover, S. C. O. 2005, Space Sci. Reviews, 117, 445CrossRefGoogle Scholar
Glover, S. C. O. & Mac Low, M.-M. 2007, ApJ, 659, 1317CrossRefGoogle Scholar
Hayashi, C. 1966, ARA&A, 4, 171CrossRefGoogle Scholar
Hayashi, C. & Nakano, T. 1965, Prog. Theor. Phys., 34, 754CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Hillenbrand, L. A. & Hartmann, L. W. 1998, ApJ, 492, 540CrossRefGoogle Scholar
Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y., & Mac Low, M.-M. 2005, A&A, 435, 611Google Scholar
Komiya, Y., Suda, T., Minaguchi, H., Shigeyama, T., Aoki, W., & Fujimoto, M. Y. 2007, ApJ, 658, 367CrossRefGoogle Scholar
Koyama, H. & Inutsuka, S. 2000, ApJ, 532, 980CrossRefGoogle Scholar
Kroupa, P. 1998, MNRAS, 298, 231CrossRefGoogle Scholar
Kroupa, P. 2002, Science, 295, 82CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Klein, R. I. 2005, Nature, 438, 332CrossRefGoogle Scholar
Krumholz, M. R. 2006, ApJ, 641, L45CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57CrossRefGoogle Scholar
Larson, R. B. 1969, MNRAS, 145, 271CrossRefGoogle Scholar
Larson, R. B. 1973b, Fundamentals of Cosmic Physics, 1, 1Google Scholar
Larson, R. B. 1985, MNRAS, 214, 379CrossRefGoogle Scholar
Larson, R. B. 2005, MNRAS, 359, 211CrossRefGoogle Scholar
Li, Y., Klessen, R. S., & Mac Low, M.-M. 2003, ApJ, 592, 975CrossRefGoogle Scholar
Loeb, A. & Barkana, R. 2001, ARA&A, 39, 19CrossRefGoogle Scholar
Low, C. & Lynden-Bell, D. 1976, MNRAS, 176, 367CrossRefGoogle Scholar
Lucatello, S., Tsangarides, S., Beers, T. C., Carretta, E., Gratton, R. G., & Ryan, S. G. 2005, ApJ, 625, 825CrossRefGoogle Scholar
Massey, P. & Hunter, D. A. 1998, ApJ, 493, 180CrossRefGoogle Scholar
Masunaga, H. & Inutsuka, S. 2000, ApJ, 531, 350CrossRefGoogle Scholar
Myers, P. C. 1978, ApJ, 225, 380CrossRefGoogle Scholar
Omukai, K., Tsuribe, T., Schneider, R., & Ferrara, A. 2005, ApJ, 626, 627CrossRefGoogle Scholar
O'Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66CrossRefGoogle Scholar
Ryan, S. G., Aoki, W., Norris, J. E., & Beers, T. C. 2005, ApJ, 635, 349CrossRefGoogle Scholar
Santoro, F. & Shull, J. M. 2006, ApJ, 643, 26CrossRefGoogle Scholar
Scalo, J. 1998, in ASP Conf. Ser. 142: The Stellar Initial Mass Function (38th Herstmonceux Conference), ed. Gilmore, G. & Howell, D. (San Francisco: Astron. Soc. Pac.), 201Google Scholar
Schneider, R., Ferrara, A., Natarajan, P. & Omukai, K. 2002, ApJ, 571, 30CrossRefGoogle Scholar
Schneider, R., Omukai, K., Inoue, A. K., & Ferrara, A. 2006, MNRAS, 369, 1437CrossRefGoogle Scholar
Tafalla, M., Myers, P. C., Caselli, P., & Walmsley, C. M. 2004, A&A, 416, 191Google Scholar
Tan, J. C. & Blackman, E. G. 2004, ApJ, 603, 401CrossRefGoogle Scholar
Tsuribe, T. & Omukai, K. 2006, ApJ, 642, L61CrossRefGoogle Scholar
Widrow, L. M. 2002, Rev. Mod. Phys., 74, 775CrossRefGoogle Scholar
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. 2006, ApJ, 652, 6CrossRefGoogle Scholar
Zucconi, A., Walmsley, C. M., & Galli, D. 2001, A&A, 376, 650Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *