Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-27T18:41:34.387Z Has data issue: false hasContentIssue false

Finding Ancient Supernovae at 5 < z < 12 with Frontier Fields

Published online by Cambridge University Press:  27 October 2016

Daniel J. Whalen*
Affiliation:
Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: dwhalen@uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae are important probes of the properties of stars at high redshifts because they can be detected at early epochs and their masses can be inferred from their light curves. Direct detection of the first cosmic explosions in the universe will only be possible with JWST, WFIRST and the next generation of extremely large telescopes. But strong gravitational lensing by massive clusters, like those in the Frontier Fields, could reveal supernovae at slightly lower redshifts now by magnifying their flux by factors of 10 or more. We find that Frontier Fields will likely discover dozens of core-collapse supernovae at 5 < z < 12. Future surveys of cluster lenses similar in scope to Frontier Fields by JWST might find hundreds of these events out to z ~ 15 - 17. Besides revealing the masses of early stars, these ancient supernovae could also constrain cosmic star formation rates in the era of first galaxy formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

de Souza, R. S., Ishida, E. E. O., Johnson, J. L., Whalen, D. J., & Mesinger, A. 2013, Monthly Notices of the RAS, 436, 1555 Google Scholar
de Souza, R. S., Ishida, E. E. O., Whalen, D. J., Johnson, J. L., & Ferrara, A. 2014, Monthly Notices of the RAS, 442, 1640 Google Scholar
Whalen, D., Prochaska, J. X., Heger, A., & Tumlinson, J. 2008b, Astrophysical Journal, 682, 1114 Google Scholar
Whalen, D. J., Fryer, C. L., Holz, D. E., Heger, A., Woosley, S. E., Stiavelli, M., Even, W., & Frey, L. H. 2013d, Astrophysical Journal Letters 762, L6 Google Scholar
Whalen, D. J., Even, W., Frey, L. H., Smidt, J., Johnson, J. L., Lovekin, C. C., Fryer, C. L., Stiavelli, M., Holz, D. E., Heger, A., Woosley, S. E., & Hungerford, A. L. 2013a, Astrophysical Journal, 777, 110 Google Scholar
Whalen, D. J., Joggerst, C. C., Fryer, C. L., Stiavelli, M., Heger, A., & Holz, D. E. 2013e, Astrophysical Journal, 768, 95 Google Scholar
Whalen, D. J., Even, W., Smidt, J., Heger, A., Chen, K.-J., Fryer, C. L., Stiavelli, M., Xu, H., & Joggerst, C. C. 2013c, Astrophysical Journal, 778, 17 Google Scholar
Whalen, D. J., Even, W., Lovekin, C. C., Fryer, C. L., Stiavelli, M., Roming, P. W. A., Cooke, J., Pritchard, T. A., Holz, D. E., & Knight, C. 2013b, Astrophysical Journal, 768, 195 Google Scholar
Whalen, D. J., Johnson, J. L., Smidt, J., Heger, A., Even, W., & Fryer, C. L. 2013f, Astrophysical Journal, 777, 99 Google Scholar
Whalen, D. J., Johnson, J. L., Smidt, J., Meiksin, A., Heger, A., Even, W., & Fryer, C. L. 2013g, Astrophysical Journal, 774, 64 CrossRefGoogle Scholar
Whalen, D. J., Smidt, J., Even, W., Woosley, S. E., Heger, A., Stiavelli, M., & Fryer, C. L. 2014a, Astrophysical Journal, 781, 106 Google Scholar
Whalen, D. J., Smidt, J., Heger, A., Hirschi, R., Yusof, N., Even, W., Fryer, C. L., Stiavelli, M., Chen, K.-J., & Joggerst, C. C. 2014b, Astrophysical Journal, 797, 9 Google Scholar
Whalen, D. J., Smidt, J., Johnson, J. L., et al. 2013, arXiv:1312.6330Google Scholar
Zitrin, A., Fabris, A., Merten, J., et al. 2015, Astrophysical Journal, 801, 44 Google Scholar