Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T03:52:55.368Z Has data issue: false hasContentIssue false

Far-Ultraviolet Observations of Outflows from Infrared-Luminous Galaxies

Published online by Cambridge University Press:  21 March 2013

Claus Leitherer
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA email: leitherer@stsci.edu, wofford@stsci.edu
Rupali Chandar
Affiliation:
The University of Toledo, Dept. of Physics and Astronomy, Toledo, OH 43606, USA email: rupali.chandar@utoledo.edu
Christy A. Tremonti
Affiliation:
University of Wisconsin, Dept. of Astronomy, 475 N. Charter St., Madison, WI 53706, USA email: tremonti@astro.wisc.edu
Aida Wofford
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA email: leitherer@stsci.edu, wofford@stsci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have obtained ultraviolet spectra between 1150 and 1450 Å of four ultraviolet-bright, infrared-luminous starburst galaxies. Our selected sight-lines towards the starburst nuclei probe the conditions in the starburst-driven outflows. We detect outflowing gas with velocities of up to ∼900 km s−1. It is likely that the outflows are a major source of metal enrichment of the galaxies' halos. The mass outflow rates of several tens of M yr−1 are similar to the star-formation rates. The outflows may quench star formation and ultimately regulate the starburst.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Calzetti, D. 2001, PASP, 113, 1449Google Scholar
Charlot, S. & Fall, S. M. 1993, ApJ, 415, 580CrossRefGoogle Scholar
Chen, Y-M., Tremonti, C. A., Heckman, T. M., et al. 2010, AJ, 140, 445Google Scholar
Coil, A. L., Weiner, B. J., Holz, D. E., et al. 2011, ApJ, 743, 46Google Scholar
Heckman, T. M., Lehnert, M. D., Strickland, D. K., & Armus, L. 2000, ApJS, 129, 493Google Scholar
Erb, D. K., Quider, A. M., Henry, A. L., & Martin, C. L. 2012, arXiv:1209.4903Google Scholar
Kunth, D., Mas-Hesse, J. M., Terlevich, E., et al. 1998, A&A, 334, 11Google Scholar
Leitherer, C., Tremonti, C. A., Heckman, T. M., & Calzetti, D. 2011, AJ, 141, 37Google Scholar
Ménard, B., Wild, V., Nestor, D., et al. 2011, MNRAS, 417, 801Google Scholar
Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ, 521, 64Google Scholar
Pettini, M., Rix, S. A., Steidel, C. C., Adelberger, K. L., Hunt, M. P., & Shapley, A. E. 2002, ApJ, 569, 742Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005a, ApJS, 160, 87Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005b, ApJS, 160, 115Google Scholar
Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005c, ApJ, 632, 751CrossRefGoogle Scholar
Schaerer, D., Hayes, M., Verhamme, A., & Teyssier, R. 2011, A&A, 531, A12Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65Google Scholar
Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289Google Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898CrossRefGoogle Scholar
Tumlinson, J., Thom, C., Werk, J. K., et al. 2011b, Science, 334, 948Google Scholar
Tumlinson, J., Werk, J. K., Thom, C., et al. 2011a, ApJ, 733, 111Google Scholar
Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769Google Scholar
Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187CrossRefGoogle Scholar
Wofford, A., Leitherer, C., & Chandar, R. 2011, ApJ, 727, 100CrossRefGoogle Scholar