Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T21:07:49.308Z Has data issue: false hasContentIssue false

Explaining the winds of AGB stars: Recent progress

Published online by Cambridge University Press:  30 November 2022

Susanne Höfner
Affiliation:
Theoretical Astrophysics, Department of Physics & Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden email: susanne.hoefner@physics.uu.se
Bernd Freytag
Affiliation:
Theoretical Astrophysics, Department of Physics & Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden email: susanne.hoefner@physics.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The winds observed around asymptotic giant branch (AGB) stars are generally attributed to radiation pressure on dust, which is formed in the extended dynamical atmospheres of these pulsating, strongly convective stars. Current radiation-hydrodynamical models can explain many of the observed features, and they are on the brink of delivering a predictive theory of mass loss. This review summarizes recent results and ongoing work on winds of AGB stars, discussing critical ingredients of the driving mechanism, and first results of global 3D RHD star-and-wind-in-a-box simulations. With such models it becomes possible to follow the flow of matter, in full 3D geometry, all the way from the turbulent, pulsating interior of an AGB star, through its atmosphere and dust formation zone into the region where the wind is accelerated by radiation pressure on dust. Advanced instruments, which can resolve the stellar atmospheres, where the winds originate, provide essential data for testing the models.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bladh, S., Höfner, S., Aringer, B., & Eriksson, K. 2015, A&A, 575, A105 Google Scholar
Bladh, S., Höfner, S., Nowotny, W., Aringer, B., & Eriksson, K. 2013, A&A, 553, A20 Google Scholar
Bladh, S., Liljegren, S., Höfner, S., Aringer, B., & Marigo, P. 2019, A&A, 626, A100 Google Scholar
Dorschner, J., Begemann, B., Henning, T., Jaeger, C., & Mutschke, H. 1995, A&A, 300, 503 Google Scholar
Eriksson, K., Nowotny, W., Höfner, S., Aringer, B., & Wachter, A. 2014, A&A, 566, A95 Google Scholar
Freytag, B. & Höfner, S. 2008, A&A, 483, 571 Google Scholar
Freytag, B., Liljegren, S., & Höfner, S. 2017, A&A, 600, A137 Google Scholar
Gail, H.-P., Scholz, M., & Pucci, A. 2016, A&A, 591, A17 Google Scholar
Gobrecht, D., Cherchneff, I., Sarangi, A., Plane, J. M. C., & Bromley, S. T. 2016, A&A, 585, A6 Google Scholar
Gobrecht, D., Plane, J. M. C., Bromley, S. T., et al. 2021, arXiv e-prints, arXiv:2110.11139Google Scholar
Höfner, S. 2008, A&A, 491, L1 Google Scholar
Höfner, S., Bladh, S., Aringer, B., & Ahuja, R. 2016, A&A, 594, A108 Google Scholar
Höfner, S., Bladh, S., Aringer, B., & Eriksson, K. 2021, arXiv e-prints, arXiv:2110.15899Google Scholar
Höfner, S. & Freytag, B. 2019, A&A, 623, A158 Google Scholar
Höfner, S. & Olofsson, H. 2018, AAPR, 26, 1 Google Scholar
Jäger, C., Dorschner, J., Mutschke, H., Posch, T., & Henning, T. 2003, A&A, 408, 193 Google Scholar
Khouri, T., Maercker, M., Waters, L. B. F. M., et al. 2016, A&A, 591, A70 Google Scholar
Liljegren, S., Höfner, S., Eriksson, K., & Nowotny, W. 2017, A&A, 606, A6 Google Scholar
Liljegren, S., Höfner, S., Freytag, B., & Bladh, S. 2018, A&A, 619, A47 Google Scholar
Norris, B. R. M., Tuthill, P. G., Ireland, M. J., et al. 2012, Nature, 484, 220 CrossRefGoogle Scholar
Nowotny, W., Aringer, B., Höfner, S., & Eriksson, K. 2013, A&A, 552, A20 Google Scholar
Nowotny, W., Aringer, B., Höfner, S., & Lederer, M. T. 2011, A&A, 529, A129 Google Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2016, A&A, 589, A91 Google Scholar
Ohnaka, K., Weigelt, G., & Hofmann, K.-H. 2017, A&A, 597, A20 Google Scholar
Paladini, C., Aringer, B., Hron, J., et al. 2009, A&A, 501, 1073 Google Scholar
Paladini, C., Baron, F., Jorissen, A., et al. 2018, Nature, 553, 310 CrossRefGoogle Scholar
Sacuto, S., Aringer, B., Hron, J., et al. 2011, A&A, 525, A42 Google Scholar
Schwarzschild, M. 1975, ApJ, 195, 137 CrossRefGoogle Scholar
Stewart, P. N., Tuthill, P. G., Monnier, J. D., et al. 2016, MNRAS, 455, 3102 CrossRefGoogle Scholar
Trabucchi, M., Wood, P. R., Montalbán, J., et al. 2017, ApJ, 847, 139 CrossRefGoogle Scholar
Trabucchi, M., Wood, P. R., Mowlavi, N., et al. 2021, MNRAS, 500, 1575 CrossRefGoogle Scholar
Wittkowski, M., Hofmann, K. H., Höfner, S., et al. 2017, A&A, 601, A3 Google Scholar
Woitke, P. 2006, A&A, 460, L9 Google Scholar
Wood, P. R. 2015, MNRAS, 448, 3829 CrossRefGoogle Scholar
Zeidler, S., Posch, T., Mutschke, H., Richter, H., & Wehrhan, O. 2011, A&A, 526, A68 Google Scholar