Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-5dv6l Total loading time: 0.271 Render date: 2021-06-18T07:30:26.629Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Evolution of the 5 January 2005 CMEs associated with eruptive filaments in inner heliosphere

Published online by Cambridge University Press:  06 January 2014

Rahul Sharma
Affiliation:
3, Indra Nagar, North Sunderwas, Udaipur, India. email: sharmarahul20@googlemail.com
Nandita Srivastava
Affiliation:
Udaipur Solar Observatory, Physical Research Laboratory, Udaipur, India.
Bernard V. Jackson
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, CA, USA.
D. Chakrabarty
Affiliation:
Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad, India.
Nolan Luckett
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, CA, USA.
Hsiu-Shan Yu
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, CA, USA.
Qiang Hu
Affiliation:
Department of Physics, The University of Alabama in Huntsville, Huntsville, AL, USA. Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL, USA.
Christian Möstl
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA, USA. Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz, Graz, Austria. Space Research Institute, Austrian Academy of Sciences, A-8042 Graz, Austria.
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

On 5 January 2005, SoHO/LASCO observed two CMEs associated with eruptive filaments with different initial velocities and acceleration. The second CME accelerates much faster than the previous and the resulting interaction has been revealed in in-situ spacecraft measurements by the presence of magnetic holes at the border of the two distinct magnetic clouds. At their interface region, these magnetic clouds have embedded filament plasma that shows complex magnetic structures with a distinct magnetic flux rope configuration; these have been modeled by the Grad - Shafranov reconstruction technique. The geomagnetic consequences of these structures have been associated with substorms in recovery phase of a storm and detailed analysis is presented in Sharma et al. (2013). In the present paper, we highlight the comparison of shape and extent of two filament plasma remnants in magnetic clouds as revealed by three - dimensional (3D) reconstruction and analysis from the Solar Mass Ejection Imager (SMEI) data. The results provide an overview of the two eruptive filaments on 5 January 2005 and their interplanetary propagation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 
You have Access
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evolution of the 5 January 2005 CMEs associated with eruptive filaments in inner heliosphere
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evolution of the 5 January 2005 CMEs associated with eruptive filaments in inner heliosphere
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evolution of the 5 January 2005 CMEs associated with eruptive filaments in inner heliosphere
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *