Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T08:07:33.103Z Has data issue: false hasContentIssue false

Dust heating in the cores of 3CRR radio galaxies

Published online by Cambridge University Press:  24 March 2015

M. Birkinshaw
Affiliation:
HH Wills Physics Laboratory, University of Bristol Tyndall Avenue, Bristol BS8 1TL, UK
D. M. Worrall
Affiliation:
HH Wills Physics Laboratory, University of Bristol Tyndall Avenue, Bristol BS8 1TL, UK
A. Bliss
Affiliation:
HH Wills Physics Laboratory, University of Bristol Tyndall Avenue, Bristol BS8 1TL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have undertaken a Spitzer campaign to measure the IR structures and spectra of low-redshift 3CRR radio galaxies. The results show that the 3.6 – 160 μm infrared properties vary systematically with integrated source power, and so demonstrate that contemporary core activity is characteristic of the behaviour of sources over their lifetimes. IR synchrotron emission is seen from jets and hotspots in some cases. Thermal emission is found from a jet/gas interaction in NGC7385. Most of the near-IR integrated colours of the low-redshift 3CRR radio galaxies are similar to those of passive galaxies, so that IR colours are poor indicators of radio activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Cleary, K., Lawrence, C. R., Marshall, J. A., Hao, L., & Meier, D. 2007, ApJ 660, 117Google Scholar
De Koff, S., Baum, S. A., Sparks, W. B., et al. 1996, ApJS 107, 621CrossRefGoogle Scholar
Fazio, G. G., et al. 2004, ApJS 154, 10Google Scholar
Kraft, R. P., Birkinshaw, M., Hardcastle, M. J., et al. 2007, ApJ 659, 1008CrossRefGoogle Scholar
Laing, R. A., Riley, J. M., & Longair, M. S. 1983, MNRAS 204, 1519CrossRefGoogle Scholar
Lanz, L., Bliss, A., Kraft, R. P., et al. 2011, ApJ 731, 52CrossRefGoogle Scholar
Makovoz, D. & Marleau, F. R. 2005, PASP 117, 1113Google Scholar
Martel, A. R., Baum, S. A., Sparks, W. B., et al. 1999, ApJS 122, 81Google Scholar
Rawes, J., Worrall, D. M., & Birkinshaw, M. 2014, MNRAS in preparationGoogle Scholar
Rawlings, S., Saunders, R., Miller, P., & Jones, M. E. 1990, MNRAS 246, 21PGoogle Scholar
Rieke, G. H., et al. 2004, ApJS 154, 25Google Scholar
Schuster, M. T., Marengo, M., & Patten, B. M. 2005, Proc. SPIE 6270, 65Google Scholar
Sérsic, J. L. 1963, Bol. AAA 6, 41Google Scholar
Seymour, N., et al. 2007, ApJS 171, 353Google Scholar
Sparks, W. B., Baum, S. A., Biretta, J., Macchetto, F. D., & Martel, A. R. 2000, ApJ 542, 667Google Scholar
Stern, D., et al. 2005, ApJ 631, 163Google Scholar
Tansley, D., Birkinshaw, M., Hardcastle, M. J., & Worrall, D. M., 2000, MNRAS 317, 623Google Scholar