Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T07:05:51.604Z Has data issue: false hasContentIssue false

The De-beamed γ-Ray Emissions in Blazars

Published online by Cambridge University Press:  25 July 2014

J. H. Fan
Affiliation:
CfA, Guangzhou University, Guangzhou 510006, China email: fjh@gzhu.edu.cn Astron. Sci. & Tech. Res. Lab. of Dept of Edu. of Guangdong Province, China
Z. Y. Ji
Affiliation:
School of Astronomy and Space science, Nanjing University, Nanjing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Blazars (BL Lacertae objects and flat spectrum radio quasars) are strong γ-ray emitters, the γ-ray emissions are strongly beamed. In this work, we compiled a sample of Fermi blazars with available beaming factors, δR, to investigate the correlation between the γ-ray flux density, logfγ, and redshift, logz for the whole sample and the subclasses of the present sample. The analysis shows that there is no correlation between logfγ and logz for the observed γ-ray flux density, but there are strong correlations between the de-beamed flux densities, logfγdb and logz for the whole sample and the subclasses. Our results confirm that the γ-ray emissions are strongly beamed and imply that it is possible for one to use the radio beaming factor, δR for the beaming effect discussions in the γ-ray bands for Fermi blazars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Arshakian, T. G., Torrealba, J., Chavushyan, V. H., et al., 2010, A&A, 520, A62Google Scholar
Fan, J. H., Yang, J. H., Zhang, J. Y., et al., 2009, PASJ, 61, 639Google Scholar
Fan, J. H., et al. 2013a, IAUS 304, Multiwavelength AGN Surveys and Studies, this proceedingsGoogle Scholar
Fan, J. H., Yang, J. H., Zhang, J. Y., et al., 2013b, PASJ, 65, 25Google Scholar
Fan, J. H., Yang, J. H., Liu, Y., & Zhang, J. Y., 2013c, RAA, 13, 259Google Scholar
Fan, J. H., Bastieri, D., Yang, J. H., et al., 2013d, RAA, (submitted)Google Scholar
Ghisellini, G., et al., 1993, ApJ, 407, 65CrossRefGoogle Scholar
Giovannini, G., 2013, IAUS 304, Multiwavelength AGN Surveys and Studies, this proceedingsGoogle Scholar
Giroletti, M., Pavlidou, V., Reimer, A., et al. 2012, AdSpR, 49, 1320Google Scholar
Kovalev, Y. Y. 2009, ApJ, 707, 56Google Scholar
Lähteenimäki, A. & Valtaoja, E., 1999, ApJ, 521, 493CrossRefGoogle Scholar
Lind, K. R. & Blandford, R. D., 1985, ApJ, 295, 358Google Scholar
Massaro, F., Giroletti, M., Paggi, A., et al. 2013a, ApJS, 207, 4Google Scholar
Massaro, F., D'Abrusco, R., Giroletti, M., et al. 2013b, ApJS, 208, 15CrossRefGoogle Scholar
Pushkarev, A. B., Kovalev, Y. Y., & Lister, M. L., 2010, ApJ, 722L, 7Google Scholar
Savolainen, T., Homan, D. C., Hovatta, T., et al., 2010, A&A, 512A, 24Google Scholar