Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T16:13:24.051Z Has data issue: false hasContentIssue false

Current Status of the LOFAR EoR Key Science Project

Published online by Cambridge University Press:  08 May 2018

L. V. E. Koopmans*
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, P.O.Box 800, NL-9700AV, Groningen, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A short status update on the LOFAR Epoch of Reionization (EoR) Key Science Project (KSP) is given, regarding data acquisition, data processing and analysis, and current power-spectrum limits on the redshifted 21-cm signal of neutral hydrogen at redshifts z = 8 − 10. With caution, we present a preliminary astrophysical analysis of ∼60 hr of processed LOFAR data and their resulting power spectrum, showing that potentially already interesting limits on X-ray heating during the Cosmic Dawn can already be gained. This is by no means the final analysis of this sub-set of data, but illustrates the future potential when all nearly 3000 hr of data in hand on two EoR windows will have been processed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Chapman, E., Abdalla, F. B., Bobin, J., Starck, J., Harker, G., Jelić, V., et al. (2013). The scale of the problem: recovering images of reionization with Generalized Morphological Component Analysis. Monthly Notices of the Royal Astronomical Society, 429 (1), 165176. http://doi.org/10.1093/mnras/sts333Google Scholar
Greig, B. & Mesinger, A. (2015). 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21cm signal. Monthly Notices of the Royal Astronomical Society, 449 (4), 42464263. http://doi.org/10.1093/mnras/stv571CrossRefGoogle Scholar
van Haarlem, M. P., Wise, M. W., Gunst, A., Heald, G., McKean, J. P., Hessels, J. W. T., et al. (2013). LOFAR: The LOw-Frequency ARray. Astronomy and Astrophysics, 556, A2. http://doi.org/10.1051/0004-6361/201220873Google Scholar
Mertens, F. G., Ghosh, A. & Koopmans, L. V. E. (2017, November 29). Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis. arXiv.org.Google Scholar
Patil, A. H., Yatawatta, S., Zaroubi, S., Koopmans, L. V. E., de Bruyn, A. G., Ciardi, B., et al. (2016, May 24). Systematic biases in low frequency radio interferometric data due to calibration: the LOFAR EoR case. arXiv.org. http://doi.org/10.1093/mnras/stw2277CrossRefGoogle Scholar
Patil, A. H., Yatawatta, S., Koopmans, L. V. E., de Bruyn, A. G., Brentjens, M. A., Zaroubi, S., et al. (2017). Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR. The Astrophysical Journal, 838 (1), 65. http://doi.org/10.3847/1538-4357/aa63e7Google Scholar
Yatawatta, S. (2015). Distributed radio interferometric calibration. Monthly Notices of the Royal Astronomical Society, 449 (4), 45064514. http://doi.org/10.1093/mnras/stv596CrossRefGoogle Scholar