Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T07:56:16.276Z Has data issue: false hasContentIssue false

Converting sink particles to stars in hydrodynamical simulations

Published online by Cambridge University Press:  20 January 2023

Kong You Liow
Affiliation:
University of Exeter, Exeter EX4 4QL, UK
Steven Rieder
Affiliation:
University of Exeter, Exeter EX4 4QL, UK RIKEN Center for Computational Science, 650-0047, Hyogo, Japan
Clare Dobbs
Affiliation:
University of Exeter, Exeter EX4 4QL, UK
Sarah Jaffa
Affiliation:
University of Hertfordshire, Hertfordshire AL10 9AA, UK University College London, London WC1H 9NE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To form stars in hydrodynamical simulations, we introduce the grouped star formation prescription to convert the grouped sink particles into stars that follow the IMF. We show that this method is robust in different physical scales. Such methods to form stars are likely to become more important as galactic or even cosmological scale simulations begin to probe sub-parsec scales.

Type
Poster Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bate, M. 2012, MNRAS, 419, 3115 CrossRefGoogle Scholar
Fujii, M., Iwasawa, M., Funato, Y. & Makino, J. 2007, PASJ, 59, 1095 CrossRefGoogle Scholar
Jaffa, S. E., et al., in preparationGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231 CrossRefGoogle Scholar
Liow, K. Y. & Dobbs, C. L. 2020, MNRAS, 499, 1099 CrossRefGoogle Scholar
Liow, K. Y., Rieder, S., Dobbs, C. L. & Jaffa, S. E. 2022, MNRAS, 510, 2657 CrossRefGoogle Scholar
Portegies Zwart, S. & Verbunt, F. 1996, A&A, 309, 179 Google Scholar
Price, D J., Wurster, J., Tricco, T. S., Nixon, C., Toupin, S., Pettitt, A., Chan, C., Mentiplay, D., Laibe, G., Glover, S., Dobbs, C., Nealon, R., Liptai, D., Worpel, H., Bonnerot, C., and Dipierro, G., Ballabio, G., Ragusa, E., Federrath, C., Iaconi, R., Reichardt, T., Forgan, D., Hutchison, M., Constantino, T., Ayliffe, B., Hirsh, K. & Lodato, G. 2018, PASA, 35, 31CrossRefGoogle Scholar
Rieder, S., Dobbs, C. L., Bending, T., Liow, K. Y. & Wurster, J. 2022, MNRAS, 509, 6155 CrossRefGoogle Scholar
Rieder, S. & Liow, K. Y. 2021, doi: 10.5281/zenodo.5520944 CrossRefGoogle Scholar
Wall, J. E., McMillan, S. L. W., Mac Low, M.-M., Klessen, R. S., & Portegies Zwart, S. 2019, ApJ, 887, 12 CrossRefGoogle Scholar
Wang, L., Iwasawa, M., Nitadori, K. & Makino, J. 2020, MNRAS, 497, 536 CrossRefGoogle Scholar