Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-20T11:48:51.065Z Has data issue: false hasContentIssue false

Comparison and Time Evolution of the Geomagnetic Cutoff at the ISS Position: Internal vs External Earth’s Magnetic Field Models

Published online by Cambridge University Press:  24 July 2018

Matteo J. Boschini
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Cineca, Segrate, Italy
Stefano Della Torre
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it
Massimo Gervasi
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Davide Grandi
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Giuseppe La Vacca
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Simonetta Pensotti
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Pier Giorgio Rancoita
Affiliation:
Cineca, Segrate, Italy
Davide Rozza
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Mauro Tacconi
Affiliation:
INFN Sezione di Milano Bicocca, I-20126 Milano, Italy email: davide.rozza@mib.infn.it Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our back-tracing code (GeoMagSphere) reconstructs the cosmic ray trajectories inside the Earth’s magnetosphere. GeoMagSphere gets the incoming directions of particles entering the magnetopause and disentangles primary from secondary particles (produced in atmosphere) or even particles trapped inside the Earth’s magnetic field. The separation of these particle families allows us to evaluate the geomagnetic rigidity cutoff. The model can be used considering the internal symmetric (IGRF-12) magnetic field only, or adding the asymmetric external one (Tsyganenko models: T89, T96 or TS05). A quantitative comparison among these models is presented for quiet (solar pressure Pdyn < 4 nPa) and disturbed (Pdyn > 4 nPa) periods of solar activity, as well as during solar events like flares, CMEs. In this analysis we focused our attention on magnetic field data in magnetosphere, from Cluster, and simulated cosmic rays for a generic detector on the ISS as for example AMS-02. We found that high solar activity periods, like a large fraction of the period covering years 2011-2015, are better described using IGRF+TS05 model. Results, i.e. the average vertical rigidity cutoff at the ISS orbit, are shown in geographic maps of 2° × 2° cells.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aguilar, M., et al. (AMS Collaboration). 2015, Phys. Rev. Lett., 114, 171, 103CrossRefGoogle Scholar
Bobik, P., Boschini, M., Grandi, D., et al. 2005, in Washington DC American Geophysical Union Geophysical Monograph Series, Vol. 155, The Inner Magnetosphere: Physics and Modeling, ed. Pulkkinen, T. I., Tsyganenko, N. A. & Friedel, R. H. W., 301Google Scholar
Bobik, P., Boella, G., Boschini, M. J., et al. 2006, Journal of Geophysical Research: Space Physics, 111 (A5)CrossRefGoogle Scholar
Cooke, D. J., Humble, J. E., Shea, M. A., et al. 1991, Il Nuovo Cimento C, 14 (3), 213234CrossRefGoogle Scholar
Della Torre, S. (AMS-02 Collaboration) 2016, in 25th European Cosmic Ray Symposium (ECRS 2016) Turin, Italy - eConf C16-09-04.3Google Scholar
Di Fino, L., Zaconte, V., Stangalini, M., Sparvoli, R., Picozza, P., et al. 2014, J. Space Weather Space Clim., 4, A19CrossRefGoogle Scholar
Escoubet, C. P., Fehringer, M. & Goldstein, M. 2001, Ann. Geophys., 19, 11971200CrossRefGoogle Scholar
Finlay, C. C., Maus, S., Beggan, C. D., et al. 2010, Geophysical Journal International, 183 (3), 1216Google Scholar
Grandi, D., Bertucci, B., Boschini, M., et al. 2015, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015) The Hague, The Netherlands)Google Scholar
Peredo, M., Stern, D. P. & Tsyganenko, N. A. 1993, Journal of Geophysics Research, 98, 15, 343CrossRefGoogle Scholar
Sibeck, D. G., Lopez, R. E. & Roelof, E. C. 1991, Journal of Geophysics Research, 96, 5489CrossRefGoogle Scholar
Shue, J.-H., Chao, J. K., Fu, H. C., et al. 1997, Journal of Geophysical Research, 102, 9497CrossRefGoogle Scholar
Störmer, C. 1956, The polar aurora Oxford University PressGoogle Scholar
Tsyganenko, N. A. 1989, Planetary Space Science, 37, 520CrossRefGoogle Scholar
Tsyganenko, N. A. 1995, Journal of Geophysics Research, 100, 55995612CrossRefGoogle Scholar
Tsyganenko, N. A. 1996, In Rolfe, E. J. & Kaldeich, B., eds., International Conference on Substorms, vol. 389 of ESA Special Publication, 181Google Scholar
Tsyganenko, N. A. & Sitnov, M. I. 2005, Journal of Geophysical Research (Space Physics), 110, A03208Google Scholar