Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T16:48:29.271Z Has data issue: false hasContentIssue false

Circumstellar structures around high-mass X-ray binaries

Published online by Cambridge University Press:  30 December 2019

Vasilii V. Gvaramadze*
Affiliation:
Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992, Russia email: vgvaram@mx.iki.rssi.ru Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many high-mass X-ray binaries (HMXBs) are runaways. Stellar wind and radiation of donor stars in HMXBs along with outflows and jets from accretors interact with the local interstellar medium and produce curious circumstellar structures. Several such structures are presented and discussed in this contribution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R. 2018, AJ, 156, 58 CrossRefGoogle Scholar
Bird, A. J., et al. 2010, ApJS, 186, 1 CrossRefGoogle Scholar
Coleiro, A., Chaty, S., Zurita Heras, J. A., Rahoui, F., & Tomsick, J. A. 2013, A&A, 560, A108 Google Scholar
Gaia Collaboration Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J., Babusiaux, C., & Bailer-Jones, C. A. L. 2018, A&A, 616, A1 Google Scholar
Gallo, E., Fender, R., Kaiser, C., Russell, D., Morganti, R., Oosterloo, T., & Heinz, S. 2005, Nature, 436, 819 CrossRefGoogle Scholar
Gontcharov, G. A. 2006, Astron. Lett., 32, 759 CrossRefGoogle Scholar
Gvaramadze, V. V. 2018, RNAAS, in press; preprint arXiv:1811.07899Google Scholar
Gvaramadze, V. V., et al. 2009, MNRAS, 400, 524 CrossRefGoogle Scholar
Gvaramadze, V. V., Kniazev, A. Y., & Fabrika, S. 2010, MNRAS, 405, 1047 Google Scholar
Gvaramadze, V. V., Röser, S., Scholz, R.-D., & Schilbach, E. 2011, A&A, 529, A14 Google Scholar
Gvaramadze, V. V., Kniazev, A. Y., & Berdnikov, L. N. 2015, MNRAS, 454, 3710 CrossRefGoogle Scholar
Gvaramadze, V. V., Alexashov, D. B., Katushkina, O. A., & Kniazev, A. Y. 2018a, MNRAS, 474, 4421 CrossRefGoogle Scholar
Gvaramadze, V. V., Maryeva, O. V., Kniazev, A. Y., Alexashov, D. B., Castro, N., Langer, N., & Katkov, I. Y. 2018b, MNRAS, in press; arXiv:1810.12916Google Scholar
Heinz, S., Grimm, H. J., Sunyaev, R. A., & Fender, R.P. 2008, ApJ, 686, 1145 CrossRefGoogle Scholar
Huthoff, F., & Kaper, L. 2002, A&A, 383, 999 Google Scholar
Kaper, L., van Loon, J. Th., Augusteijn, T., Goudfrooij, P., Patat, F., Waters, L. B. F. M., & Zijlstra, A. A. 1997, ApJ (Letters), 5475, L37 Google Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2006, A&A, 455, 1165 Google Scholar
Masetti, N., et al. 2010, A&A, 519, A96 Google Scholar
Mason, A. B., Clark, J. S., Norton, A. J., Negueruela, I., & Roche, P. 2009, A&A, 505, 281 Google Scholar
Ochsendorf, B. B., et al. 2014, A&A, 563, A65 Google Scholar
Parker, E. N. 1958, ApJ, 128, 664 CrossRefGoogle Scholar
Parker, Q., et al. 2005, MNRAS, 362, 689 CrossRefGoogle Scholar
Parkes, G. E., Murdin, P. G., & Mason, K. O. 1980, MNRAS, 190, 537 CrossRefGoogle Scholar
Prišegen, M. 2018, A&A, in press; arXiv:1811.06781Google Scholar
van Buren, D., & McCray, R. 1988, ApJ, 329, L93 CrossRefGoogle Scholar
van Buren, D., Noriega-Crespo, A., & Dgani, R. 1995, AJ, 110, 2914 CrossRefGoogle Scholar