Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T19:49:14.619Z Has data issue: false hasContentIssue false

The circumstellar discs of Be stars

Published online by Cambridge University Press:  12 July 2011

Alex C. Carciofi*
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900, São Paulo, SP, BRAZIL email: carciofi@usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Circumstellar discs of Be stars are thought to be formed from material ejected from a fast-spinning central star. This material possesses large amounts of angular momentum and settles in a quasi-Keplerian orbit around the star. This simple description outlines the basic issues that a successful disc theory must address: 1) What is the mechanism responsible for the mass ejection? 2) What is the final configuration of the material? 3) How the disc grows? With the very high angular resolution that can be achieved with modern interferometers operating in the optical and infrared we can now resolve the photosphere and immediate vicinity of nearby Be stars. Those observations are able to provide very stringent tests for our ideas about the physical processes operating in those objects. This paper discusses the basic hydrodynamics of viscous decretion discs around Be stars. The model predictions are quantitatively compared to observations, demonstrating that the viscous decretion scenario is currently the most viable theory to explain the discs around Be stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bjorkman, J. E. & Cassinelli, J. P. 1993, ApJ, 409, 429CrossRefGoogle Scholar
Bjorkman, J. E. 1997, in: de Greve, J. P., Blomme, R. & Hensberge, H. (eds.), Stellar Atmospheres: Theory and Observations, LNP (New York: Springer) 497, 239CrossRefGoogle Scholar
Bjorkman, J. E. 2000, in: IAU Colloq. 175: The Be Phenomenon in Early-Type Stars, ASP-CS 214, 435Google Scholar
Bjorkman, J. E. & Carciofi, A. C. 2005, in: Ignace, R. & Gayley, K. G. (eds.), The Nature and Evolution of Disks Around Hot Stars, ASP-CS 337, p. 75Google Scholar
Carciofi, A. C. & Bjorkman, J. E. 2006, ApJ, 639, 1081CrossRefGoogle Scholar
Carciofi, A. C. & Bjorkman, J. E. 2008, ApJ, 684, 1374CrossRefGoogle Scholar
Carciofi, A. C., Okazaki, A. T., Le Bouquin, J.-B., Štefl, S. et al. 2009, A&A, 504, 915Google Scholar
Clark, J. S., Tarasov, A. E. & Panko, E. A. 2003, A&A, 403, 239Google Scholar
Jones, C. E., Sigut, T. A. A. & Porter, J. M. 2008, MNRAS, 386, 1922CrossRefGoogle Scholar
Hanuschik, R. W. 1996, A&A, 308, 170Google Scholar
Harmanec, P. 1983, Hvar Observatory Bulletin 7, 55Google Scholar
Kato, S. 1983, PASJ, 35, 249Google Scholar
Lee, U., Osaki, Y. & Saio, H. 1991, MNRAS, 250, 432CrossRefGoogle Scholar
Meilland, A., Stee, P., Vannier, M., Millour, F. et al. 2007a, A&A, 464, 59Google Scholar
Meilland, A., Millour, F., Stee, P., Domiciano de Souza, A. et al. 2007b, A&A, 464, 73Google Scholar
Okazaki, A. T. 1991, PASJ, 43, 75Google Scholar
Okazaki, A. T. 1997, A&A, 318, 548Google Scholar
Okazaki, A. T. 2001, PASJ, 53, 119CrossRefGoogle Scholar
Okazaki, A. T., Bate, M. R., Ogilvie, G. I. & Pringle, J. E. 2002, MNRAS, 337, 967CrossRefGoogle Scholar
Okazaki, A. T. 2007, in: Okazaki, A. T., Owocki, S. P., & Stefl, S. (eds.), Active OB-Stars: Laboratories for Stellar and Circumstellar Physics, ASP-CS 361, p. 230Google Scholar
Porter, J. M. 1999, A&A, 348, 512Google Scholar
Porter, J. M. & Rivinius, T. 2003, PASP, 115, 1153CrossRefGoogle Scholar
Pringle, J. E. 1981, ARAA, 19, 137CrossRefGoogle Scholar
Quirrenbach, A., Bjorkman, K. S., Bjorkman, J. E., Hummel, C. A. et al. 1997, ApJ, 479, 477CrossRefGoogle Scholar
Rivinius, T., Baade, D., Stefl, S., Stahl, O. et al. 1998, A&A, 333, 125Google Scholar
Rivinius, T. 2007, in: Okazaki, A. T., Owocki, S. P., & Stefl, S. (eds.), Active OB-Stars: Laboratories for Stellar and Circumstellar Physics, ASP-CS 361, p. 219Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Sigut, T. A. A. & Jones, C. E. 2007, ApJ, 668, 481CrossRefGoogle Scholar
Sigut, T. A. A., McGill, M. A. & Jones, C. E. 2009, ApJ, 699, 1973CrossRefGoogle Scholar
Štefl, S., Rivinius, T., Carciofi, A. C., Le Bouquin, J.-B. et al. 2009, A&A, 504, 929Google Scholar
Townsend, R. H. D., Owocki, S. P. & Groote, D. 2005, ApJ (Letters), 630, L81CrossRefGoogle Scholar
Tycner, C., Jones, C. E., Sigut, T. A. A., Schmitt, H. R. et al. 2008, ApJ, 689, 461CrossRefGoogle Scholar
Waters, L. B. F. M. 1986, A&A, 162, 121Google Scholar
Wisniewski, J. P., Draper, Z. H., Bjorkman, K. S., Meade, M. R. et al. 2010, ApJ, 709, 1306CrossRefGoogle Scholar
de Wit, W. J., Lamers, H. J. G. L. M., Marquette, J. B. & Beaulieu, J. P. 2006, A&A, 456, 1027Google Scholar
Wood, K., Bjorkman, K. S. & Bjorkman, J. E. 1997, ApJ, 477, 926CrossRefGoogle Scholar