Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T13:32:16.657Z Has data issue: false hasContentIssue false

Characterizing the Eccentricities of Transiting Extrasolar Planets with Kepler and CoRoT

Published online by Cambridge University Press:  01 May 2008

Eric B. Ford
Affiliation:
University of Florida, 211 Bryant Space Sciences Building, Gainesville, FL 32605, USA email: eford@astro.ufl.edu
Knicole D. Colón
Affiliation:
University of Florida, 211 Bryant Space Sciences Building, Gainesville, FL 32605, USA email: eford@astro.ufl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radial velocity planet searches have revealed that many giant planets have large eccentricities, in striking contrast with the giant planets in the solar system and prior theories of planet formation. The realization that many giant planets have large eccentricities raises a fundamental question: Do terrestrial-size planets of other stars typically have significantly eccentric orbits or nearly circular orbits like the Earth? While space-based missions such as CoRoT and Kepler will be capable of detecting nearly Earth-sized planets, it will be extremely challenging to measure their eccentricities using radial velocity observations. We review several ways that photometric measurements of transit light curves can constrain the eccentricity of transiting planets. In particular, photometric observations of transit durations can be used to characterize the distribution of orbital eccentricities for various populations of transiting planets (e.g., nearly Earth-sized planets in the habitable zone) without relying on radial velocity measurements. Applying this technique to rocky planets to be found by CoRoT and Kepler will enable constraints on theories for the excitation of eccentricities and tidal dissipation. We also remind observers that several short-period transiting planets are known to have significant eccentricities and caution that assuming they are on a circular orbit can reduce the probability of detecting transits, impact planning for follow-up observations, and adversely affect measurements of the physical parameters of the star and planet.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567CrossRefGoogle Scholar
Agol, E. & Steffen, J. H. 2007, MNRAS, 374, 941CrossRefGoogle Scholar
Bakos, G. Á., et al. 2007, ApJ, 670, 826CrossRefGoogle Scholar
Barnes, J. W. 2007, PASP, 119, 986CrossRefGoogle Scholar
Beatty, T. G. & Gaudi, B. S. 2008, arXiv, 804, arXiv:0804.1150Google Scholar
Burke, C. J. 2008, ApJ, 679, 1566CrossRefGoogle Scholar
Butler, R. P., et al. 2006, ApJ, 646, 505CrossRefGoogle Scholar
Carter, J. A., Yee, J. C., Eastman, J., Gaudi, B. S., & Winn, J. N. 2008, arXiv, 805, arXiv:0805.0238Google Scholar
Charbonneau, D., et al. 2005, ApJ, 626, 523CrossRefGoogle Scholar
Christian, D. J., et al. 2008, arXiv, 806, arXiv:0806.1482Google Scholar
Claret, A. 2000, A&A, 363, 1081Google Scholar
Deming, D., Harrington, J., Laughlin, G., Seager, S., Navarro, S. B., Bowman, W. C., & Horning, K. 2007, ApJ, 667, L199CrossRefGoogle Scholar
Ford, E. B. 2006, ApJ, 642, 505CrossRefGoogle Scholar
Ford, E. B. & Gaudi, B. S. 2006, ApJ, 652, L137CrossRefGoogle Scholar
Ford, E. B. & Holman, M. J. 2007, ApJ, 664, L51CrossRefGoogle Scholar
Ford, E. B., Quinn, S. N., & Veras, D. 2008, ApJ, 678, 1407CrossRefGoogle Scholar
Gaudi, B. S. & Winn, J. N. 2007, ApJ, 655, 550CrossRefGoogle Scholar
Gillon, M., Triaud, A. H. M. J., Mayor, M., Queloz, D., Udry, S., & North, P. 2007, arXiv, 712, arXiv:0712.2073Google Scholar
Holman, M. J. & Murray, N. W. 2005, Sci, 307, 1288CrossRefGoogle Scholar
Johns-Krull, C. M., et al. 2008, ApJ, 677, 657CrossRefGoogle Scholar
Jordan, A. & Bakos, G. A. 2008, arXiv, 806, arXiv:0806.0630Google Scholar
Joshi, Y. C., et al. 2008, arXiv, 806, arXiv:0806.1478Google Scholar
Laughlin, G., Marcy, G. W., Vogt, S. S., Fischer, D. A., & Butler, R. P. 2005, ApJ, 629, L121CrossRefGoogle Scholar
Mandel, K. & Agol, E. 2002, ApJ, 580, L171CrossRefGoogle Scholar
Maness, H. L., Marcy, G. W., Ford, E. B., Hauschildt, P. H., Shreve, A. T., Basri, G. B., Butler, R. P., & Vogt, S. S. 2007, PASP, 119, 90CrossRefGoogle Scholar
Miralda-Escudé, J. 2002, ApJ, 564, 1019CrossRefGoogle Scholar
Shen, Y. & Turner, E. L. 2008, arXiv, 806, arXiv:0806.0032Google Scholar
Southworth, J. 2008, MNRAS, 386, 1644CrossRefGoogle Scholar
Ribas, I., Font-Ribera, A., & Beaulieu, J.-P. 2008, ApJ, 677, L59CrossRefGoogle Scholar
Steffen, J. H. & Agol, E. 2005, MNRAS, 364, L96CrossRefGoogle Scholar
Takeda, G., Ford, E. B., Sills, A., Rasio, F. A., Fischer, D. A., & Valenti, J. A. 2007, ApJS, 168, 297CrossRefGoogle Scholar
Tingley, B. & Sackett, P. D. 2005, ApJ, 627, 1011CrossRefGoogle Scholar
Torres, G., Winn, J. N., & Holman, M. J. 2008, ApJ, 677, 1324CrossRefGoogle Scholar
Winn, J. N., Holman, M. J., & Roussanova, A. 2007, ApJ, 657, 1098CrossRefGoogle Scholar
Yee, J. C. & Gaudi, B. S. 2008, arXiv, 805, arXiv:0805.1936Google Scholar