Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.314 Render date: 2021-10-22T14:26:12.541Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Black hole and nuclear cluster scaling relations: MbhMnc2.7±0.7

Published online by Cambridge University Press:  07 March 2016

Alister W. Graham*
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. email: AGraham@swin.edu.au
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is a growing array of supermassive black hole and nuclear star cluster scaling relations with their host spheroid, including a bent (black hole mass)–(host spheroid mass) MbhMsph relation and a different (massive compact object mass)–(host spheroid velocity dispersion) Mmco–σ relations for black holes and nuclear star clusters. By combining the observed Mbh ∝ σ5.5 relation with the observed Mnc ∝ σ1.6–2.7 relation, we derive the expression MbhMnc2–3.4, which should hold until the nuclear star clusters are eventually destroyed in the larger core-Sérsic spheroids. This new mass scaling relation helps better quantify the rapid evolutionary growth of massive black holes in dense star clusters, and the relation is consistently recovered when coupling the observed MncMsph0.6–1.0 relation with the recently observed quadratic relation MbhMsph2 for Sérsic spheroids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Balcells, M., Graham, A. W., Domínguez-Palmero, L., & Peletier, R. F. 2003, ApJ Lett., 582, L79CrossRefGoogle Scholar
Balcells, M., Graham, A. W., & Peletier, R. F. 2007a, ApJ, 665, 1084CrossRefGoogle Scholar
Bekki, K. & Graham, A. W. 2010, ApJ Lett., 714, L313CrossRefGoogle Scholar
Brown, J. S., Valluri, M., Shen, J., & Debattista, V. P. 2013, ApJ, 778, 151CrossRefGoogle Scholar
Cappellari, M., McDermid, R. M., Alatalo, K.et al. 2013, MNRAS, 432, 1862CrossRefGoogle Scholar
Côté, P., Piatek, S., Ferrarese, L., et al. 2006, ApJS, 165, 57CrossRefGoogle Scholar
Davies, R. L., Efstathiou, G., Fall, S. M., Illingworth, G., & Schechter, P. L. 1983, ApJ, 266, 41CrossRefGoogle Scholar
Debattista, V. P., Kazantzidis, S., & van den Bosch, F. C. 2013, ApJ, 765, 23CrossRefGoogle Scholar
den Brok, M., Peletier, R. F., Seth, A., et al. 2014, MNRAS, accepted (arXiv:1409.4766)Google Scholar
Dullo, B. T. & Graham, A. W. 2014, MNRAS, 444, 2700CrossRefGoogle Scholar
GonzálezDelgado, R. M. Delgado, R. M., Pérez, E., CidFernandes, R. Fernandes, R., & Schmitt, H. 2008, AJ, 135, 747Google Scholar
Graham, A. W. 2008, ApJ, 680, 143CrossRefGoogle Scholar
Graham, A. W. 2012a, ApJ, 746, 113CrossRefGoogle Scholar
Graham, A. W. 2012b, MNRAS, 422, 1586CrossRefGoogle Scholar
Graham, A. W. 2013, in “Planets, Stars and Stellar Systems”, Vol. 6, p. 91140, Oswalt, T.D. & Keel, W.C (eds.), Springer Publishing (arXiv:1108.0997)CrossRefGoogle Scholar
Graham, A. W., Erwin, P., Trujillo, I., & AsensioRamos, A. Ramos, A. 2003, AJ, 125, 2951CrossRefGoogle Scholar
Graham, A. W. & Guzmán, R. 2003, AJ, 125, 2936CrossRefGoogle Scholar
Graham, A. W., Onken, C. A., Athanassoula, E., & Combes, F. 2011, MNRAS, 412, 2211CrossRefGoogle Scholar
Graham, A. W. & Li, I-H. 2009, ApJ, 698, 812CrossRefGoogle Scholar
Graham, A. W. & Scott, N. 2013, ApJ, 764, 151CrossRefGoogle Scholar
Graham, A. W. & Spitler, L. R. 2009, MNRAS, 397, 2148CrossRefGoogle Scholar
Grant, N. I., Kuipers, J. A., & Phillipps, S. 2005, MNRAS, 363, 1019CrossRefGoogle Scholar
Greene, J. E., Peng, C. Y., Kim, M., et al. 2010, ApJ, 721, 26CrossRefGoogle Scholar
Hartmann, M., Debattista, V. P., Cole, D. R., et al. 2013, MNRAS, 441, 1243CrossRefGoogle Scholar
Hu, J. 2008, MNRAS, 386, 2242CrossRefGoogle Scholar
Kormendy, J. & Bender, R. 2011, Nature, 469, 377CrossRefGoogle Scholar
Lauer, T. R., Ajhar, E. A., Byun, Y.-I., et al. 1995, AJ, 110, 2622CrossRefGoogle Scholar
Leigh, N., Böker, T., & Knigge, C. 2012, MNRAS, 424, 2130CrossRefGoogle Scholar
Matković, A., & Guzmán, R. 2005, MNRAS, 362, 289CrossRefGoogle Scholar
McConnell, N. J. & Ma, C.-P. 2013, ApJ, 764, 184CrossRefGoogle Scholar
Neumayer, N. & Walcher, C. J. 2012, Advances in Astronomy 2012 (arXiv:1201.4950)Google Scholar
Scott, N. & Graham, A. W. 2013, ApJ, 763, 76CrossRefGoogle Scholar
Scott, N., Graham, A. W., & Schombert, J. 2013, ApJ, 768, 76CrossRefGoogle Scholar
Sérsic, J.-L. 1963, Boletin de la Asociacion Argentina de Astronomia, vol.6, p.41Google Scholar
Seth, A., Agüeros, M., Lee, D., & Basu-Zych, A. 2008, ApJ, 678, 116CrossRefGoogle Scholar
Trujillo, I., Erwin, P., Asensio Ramos, A., & Graham, A. W. 2004, AJ, 127, 1917CrossRefGoogle Scholar
Wehner, E. H. & Harris, W. E. 2006, ApJ Lett., 644, L17CrossRefGoogle Scholar
You have Access
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Black hole and nuclear cluster scaling relations: MbhMnc2.7±0.7
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Black hole and nuclear cluster scaling relations: MbhMnc2.7±0.7
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Black hole and nuclear cluster scaling relations: MbhMnc2.7±0.7
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *